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Abstract

Due to the poor performance of TCP on high latency paths, in networks with geosta-

tionary satellite links Performance Enhancing Proxies are used. However, because

of encrypted headers, this is no longer possible with QUIC, so that the achieved

throughput is usually low. At the same time, with features such as 0-RTT connec-

tion establishment and new congestion control mechanisms, QUIC offers fast data

transmissions even under challenging conditions.

So far, there has been little research on the performance of the IETF QUIC in

satellite communications and only few implementations have been considered. In

this thesis, we present an automated test environment based on the QUIC-Interop-

Runner used by the IETF. It allows performing and evaluating uniform measurements

with the main implementations over both emulated and real satellite links.

The measurement results show large differences between implementations and

that the speed depends on both the server and the client in use. We can verify that the

average link utilization is very low. We also notice that with some implementations it

is impossible to transfer larger files under such conditions. Based on the comparison

of different real-world satellite accesses, we conclude that a higher available data

rate alone does not always lead to a better throughput.
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Kurzfassung

Aufgrund der schlechten Leistung von TCP bei Pfaden mit hoher Latenz werden

in Netzwerken mit geostationären Satellitenverbindungen Performance Enhancing

Proxies eingesetzt. Das ist bei QUIC wegen verschlüsselter Header jedoch nicht

mehr möglich, weshalb der erreichte Durchsatz meist niedrig ist. Gleichzeitig bietet

QUIC durch Features wie 0-RTT Verbindungsaufbau und neue Congestion-Control-

Mechanismen die Chance, auch unter herausfordernden Bedingungen schnelle Da-

tenübertragungen zu gewährleisten.

Bisher gibt es kaum Forschung zur Leistung von IETF-QUIC in der Satelliten-

kommunikation und es wurden nur wenige Implementierungen betrachtet. Wir

stellen eine automatisierte Testumgebung vor, die auf dem von der IETF eingesetzten

QUIC-Interop-Runner basiert. Sie ermöglicht es, einheitliche Messungen mit den

wichtigsten Implementierungen über sowohl emulierte als auch reale Satellitenver-

bindungen durchzuführen und auszuwerten.

Die Messergebnisse zeigen große Unterschiede zwischen den Implementierungen

und dass die Geschwindigkeit sowohl vom verwendeten Server als auch vom Client

abhängt. Wir können verifizieren, dass die durchschnittliche Ausnutzung der Links

sehr niedrig ist. Wir stellen auch fest, dass es unter derartigen Bedingungen mit

einigen Implementierungen nicht möglich ist, größere Dateien zu übertragen. Aus

dem Vergleich verschiedener realer Satellitenzugänge folgern wir, dass allein eine

höhere verfügbare Datenrate nicht immer zu einem besseren Durchsatz führt.
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Chapter 1

Introduction

Once you’ve been in space, you appreciate

how small and fragile the Earth is.

Valentina Tereshkova

Much has changed in space since 1945, when Arthur C. Clarke proposed the usage

of “Extra-terrestrial Relays” that orbit around Earth and act like bent-pipes in radio

communications to make it possible to communicate across continents [1]. Since

then, satellite communications (SATCOM) have become the most relevant field of

space activity. Being commercially profitable it allows spreading information all over

the world. Both benefits are important for western market-based democracies [2].
In 2020, there are almost 2700 operational satellites in space with almost half of

them used for communications1. With the construction of Low Earth Orbit (LEO)

mega-constellations, this number is currently rapidly increasing. Nowadays, the

predominant application of communication satellites is providing users on Earth with

Internet access. Even in case of natural disasters they can reliably supply large areas

and help to fulfill the 9th Sustainable Development Goal (SDG), to “build resilient

infrastructure”2. Satellite based Internet access is typically used to connect remote

and rural locations, create backup links, rapidly deploy new services and provide

mobile environments, like vessels, ships, and aircraft [3]. For a couple of years, a lot

of attention has been on the new LEO mega-constellations. However, geostationary

satellites will remain relevant for satellite Internet for the foreseeable future due to

their advantages, like fixed position in the sky, longer lifetime and higher coverage.

This thesis is focussing on geostationary satellites.

1Visualizing All of Earth’s Satellites: Who Owns Our Orbit? https://www.visualcapitalist.com/
visualizing-all-of-earths-satellites/ (visited on 2021-12-21)

2SDG9: “Build resilient infrastructure, promote inclusive and sustainable industrialization and foster
innovation” https://sdgs.un.org/goals/goal9 (visited on 2021-12-21)

1

https://www.visualcapitalist.com/visualizing-all-of-earths-satellites/
https://www.visualcapitalist.com/visualizing-all-of-earths-satellites/
https://sdgs.un.org/goals/goal9


1 Introduction 2

Major transformations are currently also taking place in the field of transport

protocols. The new QUIC protocol is about to replace the aging TCP at least in

web stacks. This is mainly because it usually achieves a higher performance [4].
Middleboxes prevent the deployment of new mechanisms on TCP and lead to an

ossified Internet. Therefore, their presence on the Internet is consistently tackled by

encrypting transport layer information.

This presents a threat to SATCOM operators who use middleboxes named Perfor-

mance Enhancing Proxies (PEPs) so far to transparently enhance the performance

of end-to-end TCP connections on the satellite segment. They are required because

satellite path characteristics differ significantly from those of terrestrial paths, mainly

in higher latency. This has an impact on the efficiency of transport protocols [3].
For QUIC connections without path-awareness, this results in very poor throughput

on links via geostationary satellites, as current research shows. Downgrading to

TCP by blocking QUIC is not a long-term solution. Instead, the opportunities for

extensibility and features, such as 0-RTT handshakes and pluggable Congestion

Control Algorithms (CCAs) appears favorable.

However, to this point, there has been very little research on the performance of

IETF QUIC in SATCOM. In addition, only very few implementations of QUIC have

been taken into account yet, although it must be assumed that the performance

heavily depends on the choice of implementation.

By presenting an automated test bed that allows running uniform measurements

with numerous client and server implementations via both emulated and real satellite

links, we are able to assess the influence of the implementation on the performance

of a QUIC connection. We can also to identify implementations that achieve slightly

better performance on satellite links than others, and analyze weaknesses of poorly

performing ones by inspecting their traces in detail. These conclusions might also

apply to some extent to other networks with similar properties, like on-board Wi-Fi

in trains, though, this will require future research.

In Chapter 2, we introduce to SATCOM and explain challenges of links via geo-

stationary satellite links. Additionally, we present an overview of the most relevant

features of QUIC in the context of SATCOM. After that, in Chapter 3, we give an

overview of related research with the focus on measurements of QUIC via geosta-

tionary satellites. Chapter 4 documents the newly developed test environment for

massive evaluation of QUIC implementations. The results of our measurements, us-

ing this tool, are presented and evaluated in Chapter 5. Finally, Chapter 6 summarizes

the results and names future work.



Chapter 2

Fundamentals

[. . .] I cannot imagine a better instrument of

counter-revolution

With these words, Josef Stalin rejected a plan to improve the

Soviet telephone system in 1953.

In this chapter, we outline the technical concepts and basis of our work. First we

give a short overview about SATCOM in general, followed by the characteristics of

communication channels with satellites in the Geostationary Earth Orbit. Measures

already currently applied to TCP to achieve high efficiency over such challenging

links are also presented. In the second part, most important Congestion Control

Algorithm are briefly introduced. The last part of this chapter deals with QUIC, with

its current and proposed features and their importance for SATCOM.

2.1 Satellite Communications

When a satellite is involved in at least one part of a telecommunication link, this is

called satellite communications (SATCOM). While telephony used to be the main

focus of interest formerly, the “predominate current use today is to support Internet

Protocols” [3], while Internet browsing dominates the traffic [5]. The properties of

SATCOM links highly depend on the kind of satellites that are used to establish the

connection. The different kinds are explained in the next sections.

2.1.1 Orbits

Most artificial satellites are orbiting the Earth in a pre-defined elliptical orbit which

follows the Kepler’s law of planetary motion. The law sets the dimensions of the

3
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Earth

LEO MEO GEO

inner
Van Allen
Radiation
Belt

outer
Van Allen
Radiation
Belt

0 km 7000 km 27 000 km 42 160 km

20 ms 400 ms 600 ms

500 km 20 500 km 35 790 km

Radius:

RTT:

Height:

Figure 2.1 – The Most Important Earth Orbits:
Geostationary Earth Orbit (GEO), Low Earth Orbit (LEO), Medium Earth
Orbit (MEO), and the inner and outer Van Allen radiation belts, zones of
energetic charged particles, which makes it impracticable for satellites.

axes in relation to the speed of the satellite. The following parameters define an

orbit around an astronomical body [2]:

• Inclination (i)
• Longitude of the ascending node (Ω)
• Argument of periapsis (ω)
• Eccentricity (e)
• Semi-major axis (a)
• Mean anomaly at epoch (M0).

For SATCOM, the most important parameter is a, the dimension of the semi-major

axis. As orbits are often almost circular (e ≈ 0), a equals the radius of the orbit. To

simplify it further, we can also use the altitude above the surface of Earth, because

right now all communication satellites are orbiting the Earth. The required speed of

the satellite depends on a and is higher for lower orbits.

That being said, only three categories of orbits are important for SATCOM. They

are visualized in Figure 2.1 and explained in the following sections.

2.1.1.1 Low Earth Orbit

The nearest orbit to the Earth’s surface is the Low Earth Orbit (LEO) with an altitude

below 2000 km. Additionally, orbits below 450 km are called Very Low Earth Orbit

(VLEO) orbits [6]. The small distance to Earth leads to a low signal attenuation and

additionally to a small propagation delay for electromagnetic signals. This makes

it interesting for SATCOM because depending on the exact scenario the delay is

comparable to terrestrial optical fibers.

The following equations calculate the propagation delays dprop of an exemplary

communication of two endpoints on Earth via a LEO satellite and a terrestrial fiber.
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The endpoints for the SATCOM scenario are close the point on Earth’s surface directly

below the satellite. This point is called nadir. We set the height of the satellite to

h = 750km in Equation (2.1). The signal must travel this distance twice. For

Equation (2.2), a fiber length of 1000 km is used with speed of light cfiber ≈
2
3 · cfree

with cfree ≈ 3 · 108 m/s [7]:

dprop, LEO =
h · 2
cfree

≈
750km · 2
3 · 108 m/s

= 5ms (2.1)

dprop, fiber =
length
cfiber

≈
1000km

2 · 108 m/s
= 5ms (2.2)

On the other hand, there are some reasons that made this orbit less interesting

for many years: The high velocity of the satellites required by Newton’s law (see

Section 2.1.1.3) which makes it hard to align the customer’s antenna and which

leads to distortion because of the Doppler effect. As the line of sight persists only for

minutes, handovers between satellites are required as soon as the one, the ground

station is currently connected to, crosses the horizon. The shifting relative positions

also result in a high variance of delays [8]. Additionally, due to the small distance a

large amount of satellites is required to cover a significant area of the Earth’s surface

and thus reach many customers. This makes it costly as well as complex since all of

them must be arranged in a stable constellation.

However, changes occurred in the last few decades. The space has been com-

mercialized which drives down costs. Phased array antennas have developed and

can be used to readjust the antenna beam to follow the satellite’s trajectory. And

once deployed the large amount of satellites forms a very fault-tolerant network.

Starlink by SpaceX is a major player in trying to provide Internet access via LEO using

mega-constellations that consists of thousands of satellites. With promising data

rates between 50 and 150 Mbit/s at a low delay of 20 to 40 ms3, new opportunities

are arising: People that nowadays have no access to the Internet might be supplied

with high speed Internet one day, provided that the monthly costs are reduced in the

future. It is also discussed integrating satellite services into cellular communication

standards [6].
But also new challenges emerge with mega-constellations: To achieve good

performance routing within the satellite network is required [6]. Therefore, satellites

are usually equipped with Inter-Satellite Link (ISL) using laser beams. From protocol

perspective, issues like out-of-order delivery caused by the highly varying network

have to be addressed [3]. And of course the political questions exists, who is allowed

to launch such a large amount of satellites and how to handle space debris. The

latter one has to be avoided to prevent chain reactions of uncontrolled collisions

3Announced specifications on the website of Starlink: https://starlink.com/ (visited on 2022-01-
05)

https://starlink.com/
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of objects in space. This effect is called Kessler Syndrome [9] and poses a severe

danger to space activities.

2.1.1.2 Medium Earth Orbit

Everything between LEO and GEO is considered to be a Medium Earth Orbit (MEO).

While often used by navigation satellites like GPS, GLONASS, Galileo and BeiDou

it is rarely used for communication satellites. The larger delays compared to LEO

and the variable ground track of MEO satellites makes this orbit less suitable for

communication satellites. But there are also advantages: Caused by the larger

distance, much fewer satellites are required to cover the Earth’s surface and handovers

have to take place less frequently, e.g., every 45 min for O3b. It is operated by the

space company SES and deployed at an altitude of 8063 km [3]. With only 20

satellites it provides broadband Internet connectivity to the “other three billion”

people without Internet access. To summarize, using MEO is a trade-off between

GEO and LEO with acceptable latencies and a limited number of satellites required.

2.1.1.3 Geostationary Earth Orbit

The Geostationary Earth Orbit (GEO) is used to place satellites on a fixed longitude

above the Earth’s equator. This property is very useful for SATCOM because ground

antennas can be installed statically, and no automatic tracking is required. The

inclination of the orbit has to be a = 0° and the direction of rotation has to equal the

Earth’s rotation. The radius of the orbit is rGEO ≈ 42160 km, which results from the

balance of the centrifugal and centripetal forces. The first one is caused by the circular

movement of the satellite and the latter one is the Newton’s gravity. Combining both

formulas results in Equation (2.3) which can be resolved to the radius, as shown

in Equation (2.4) [2]. For GEO, the standard gravitational parameter of the Earth

G · M = µ ≈ 3.986 · 1014 m3/s2 and the sidereal day TGEO ≈ 1436 min has to be

used:

TGEO = 2π

√

√

√ r3
GEO

G ·M
(2.3)

⇒ rGEO =
3
√

√G ·M · T 2

(2π)2
≈

3
√

√

√3.986 · 1014 m3/s2 · (1436 min)2

(2π)2
≈ 42 160km (2.4)

With the radius of the Earth being about rEarth ≈ 6370 km the altitude above the

surface is hGEO ≈ 35790 km.

A big advantage for SATCOM of GEO compared to the other orbits we intro-

duced before, is that in theory only three satellites are required to cover the entire

Earth’s surface, except the polar regions which can’t be covered using GEO satel-
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lites. Practically often six satellites are used because while in theory the beam of

one satellite covers 40 % of the surface, in only 20 % of the area the signal meets

the desired quality [8]. The footprint is also large enough that no handovers are

required. The large distance from earth however leads to high signal attenuation

which makes communications challenging. Also installing new satellites in that orbit

is very expensive owing to the distance.

Nevertheless, this orbit is one of the most desired ones for broadcasting and

communications because of the fixed location of the satellites above the Earth.

According to the Union of Concerned Scientists Satellite Database4 there are currently

565 GEO satellites arranged on a ring on the equatorial plane, making this area very

crowded. Therefore, it is very costly to get a license and an assigned position. That

is the reason GEO satellites are built for long lifetimes and high reliability [2]. To be

able to provide many customers with one satellite, spot beams are used, while each

beam serves one area on the ground. Neighbored beams use different frequencies in

the Ka-band (27–40 GHz) which are reused with enough distance. The total capacity

of modern High Throughput Satellites (HTSs) is in the range of some 100 Gbit/s to

some Tbit/s. It is increasing for newer generations [10].

2.1.2 Components of an IP SATCOM System

The task of a classic GEO satellite basically is to receive signals, amplify, modulate

them to another frequency and retransmit them to earth. As it usually operates on the

physical layer and in particular does not process packets, a communication channel

via such a satellite is referred to as bent pipe. Links are established bidirectionally,

both from the providers Source Ground Station (SGS) to the User Segment (referred

to as forward link or downlink) and in the reverse direction (referred to as return link

or uplink). Connections between forward and return links differ to the extent that

User Segment SGS (SCC, NCC)

Space Segment

Ground Segment

for
ward

lin
k

return linkWi-Fi
/ LAN Internet

Figure 2.2 – Main Components of a SATCOM System

4Union of Concerned Scientists Satellite Database: https://www.ucsusa.org/resources/
satellite-database#.W7WcwpMza9Y (visited on 2022-01-04)

https://www.ucsusa.org/resources/satellite-database#.W7WcwpMza9Y
https://www.ucsusa.org/resources/satellite-database#.W7WcwpMza9Y
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all connections in the forward link can be managed centrally. E.g., Time Division

Multiple Access (TDMA) can be used to multiplex the connections in the forward link,

whereas other methods must be used in the return link [3]. While both antennas on

the Ground Segment are parabolic antennas, satellite operators usually use larger ones

to achieve a better directivity. Besides of the antenna, customers of IP services are

equipped with a modem offering carrier-grade NAT or public (legacy) IPv4 addresses.

IPv6 addresses, as they would be state of the art, are rarely provided when using

consumer-grade tariffs [5]. Users connect to the modem using Ethernet or Wi-Fi.

On the provider side there are usually two operation centers: The Network Control

Center (NCC) providing the connection to the Internet backbone (also called feeder

in the broadcasting sector) and the Satellite Control Center (SCC) which controls

the satellite by sending and receiving Telemetry, Tracking and Control (TT&C)

commands.

2.1.3 Characteristics of Network Links via GEO Satellites and

Mitigations

IP networks using GEO satellites differ from terrestrial networks in some properties.

The most relevant ones are described in the following sections.

2.1.3.1 High Delay

The most relevant characteristic of a GEO link is the remarkably high latency caused

by the propagation of electromagnetic signals. Similar to Equation (2.1) we can

calculate the minimum delay from one ground station to the other by using the

height of the satellite hGEO ≈ 35790 km in Equation (2.5). The minimum Round-Trip

Time (RTT) for GEO links calculated in Equation (2.6) is this delay doubled since it

affects the forward and the return link.

dprop, GEO =
hGEO · 2

cfree
≈

35 790km · 2
3 · 108 m/s

≈ 240 ms (2.5)

RT Tmin, GEO = 2 · dprop, GEO ≈ 480 ms (2.6)

When both GSs are not located directly below the satellite but at the edge of

the coverage, the signal travels 2 · 41760 km, which results in an RTT of roughly

557 ms [3]. However, the endpoints usually experience an RTT of at least 600 ms

caused by additional processing delays like Forward Error Correction (FEC) encoding,

which is explained in Section 2.1.3.5. Extending the path at both sides (e.g., by

counting in the hops from the providers Ground Station (GS) to the target web

server and by using a LAN on the users side) further increases the delay. At times
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when the utilization of the network is high, even RTTs of more than 1 s are possible

(see Section 2.1.3.3).

2.1.3.2 Asymmetric Data Rates

As mentioned before, space in the geostationary orbit is limited and only one satellite

is responsible for quite a large part of the earth. Although HTSs have an overall

high capacity in total, it has to be shared with many users. Additionally, the avail-

able frequency spectrum, allocated by the International Telecommunication Union,

Radiocommunication Sector (ITU-R), is limited but has to be used in the forward

and the return link. Adapted to the typical usage profile the bandwidth and thus the

available data rates in the forward link is usually larger than in the return link, which

results in faster downloads than uploads [3]. A characteristic asymmetry factor is

ten. For instance the Astra access, we have used, advertises 20 Mbit/s in the forward

link and 2 Mbit/s in the return link (see Section 4.2.2.1). The data rate assigned per

user in the forward direction is typically in the range of 1 to 100 Mbit/s [10]. While

usually more data is transferred via the forward link, the return link is always used

for signaling (see Section 2.1.3.5). When the asymmetry gets too high, ACK traffic

reduction mechanisms can be used to achieve high download rates [3].

2.1.3.3 Variations in Delay and Data Rate

One of the advantages of GEO above LEO is that there is not a high jitter caused e.g.,

by mobility issues and handovers between satellites, given that there are no moving

obstacles in the line of sight. Yet the signals must pass through the atmosphere which

makes the link quality and capacity dependent on the weather. It was observed

that heavy snowfall degrades the throughput and reliability of the connection [11].
Apart from that, the throughput is also influenced by the utilization of the shared

satellite, which is usually higher during the prime time between about 6 p.m. and

11 p.m. [11]
A reason for this is that packages are queued in network devices before they are

being processed and forwarded. Historically the maximum size of these queues grew

proportionally to the development of the network speed. As the average length of

queues increases on high demand, nowadays, large queuing delays may occur, which

leads to less throughput per user. This phenomenon is referred to as Bufferbloat [12].
It was predicted by John Nagle in 1985 [13] and became relevant more than 20

years later.
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2.1.3.4 High Bandwidth Delay Product

Given the unidirectional delay and the data rate we can calculate the so called

Bandwidth Delay Product (BDP)5. This product is often used to classify networks

because it defines the amount of unacknowledged data a transport protocol is allowed

to have “in flight”, which in return defines the minimum size of send and receive

buffers [14] [15]. Additionally, the BDP equals the size, a transmitter could send,

instead of waiting for feedback from the client, which is a lot for GEO networks.

See Section 2.1.3.6 for information about congestion control and Automatic Repeat-

Request (ARQ) protocols. However, it should be mentioned that the BDP alone does

not describe a network sufficiently. Networks with the same BDP but different delays

differ greatly.

The BDP for satellite links is larger, than for terrestrial fiber networks, for its

higher delay, as shown in Equations (2.7) and (2.8). Such networks are generally

referred to as high BDP networks or Long Fat Networks (LFNs) [3] [16]6.

BDPGEO = dprop, GEO · R≈ 240 ms · 50Mbit/s= 1.5 MB (2.7)

BDPterr = dprop, fiber · R≈ 5ms · 1 Gbit/s= 625 kB (2.8)

Figure 2.3 explains the relationship between BDP and buffer sizes. On the left

side the transmit-buffers and on the right side the receive-buffers are displayed

for four points in time. Between the channel fill state is visualized. Both buffers

have an ideal size of 2 · BDP. At the start of the transmission the channel and the

pending

in flight pending

in flight

ACK’d in flight

recv’d

recv’d

TX RX

1st Byte

1st ACK

last Byte

last ACK

transmit-buffer receive-buffer

Figure 2.3 – Sequence Diagram of a Transmission Between a Transmitter (TX)
and a Receiver (RX) with Ideal Buffer Sizes According to BDP

5Usually we prefer using the word “data rate” instead of “bandwidth” for the speed of transferring
data because bandwidth is used for frequency spectrum. We make an exception for “Bandwidth Delay
Product” because “data rate delay product” is not used in literature.

6It should be noted that although according to RFC 1072 both networks are referred to as high
BDP networks, they can hardly be compared. Instead, the threshold value of 1 · 105 bit in RFC 1072 is
outdated.
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receive-buffers are empty. When the first packet arrives at the receiver the channel is

entirely filled with 1 · BDP Bytes and the receiver transmits the first ACK back to the

transmitter. At the time this ACK arrives at the transmitter, all data in the transmit-

buffer is sent, but not yet acknowledged. At this moment the transmitter stops

sending new data in the example. When the last packet arrives at the receiver, the

ideal receive-buffer is entirely filled, while ACKs for only the half of the transmitted

data arrived at the transmitter.

2.1.3.5 Packet Errors

Since packet errors and losses are to be expected with every link, transport protocols

that implement ARQ are used on the Internet. However, since DVB-S2 is used on

the physical layer, losses are quite rare on satellite links under good conditions. It

provides a quasi error-free (QEF) channel by adapting the modulation rate depending

on the link quality and by exploiting FEC with variable coding rate [10]. Thus, the

Bit Error Ratio (BER) exposed to upper layers is usually less than 1 ·10−7 [3]. But the

satellite path is usually only one part of the end-to-end link from the user to the server.

Users often use Wi-Fi to connect to the modem. While there are countermeasures to

reduce loss rates in such wireless networks as well, the error rates there can become

very high, and errors usually appear in bursts. A simplified Gilbert-Elliot [17] loss

model can be used to emulate packet errors for such a network, at which a probability

of P(b|g) = 0.018 to switch from the “good” to the “bad” state is often used [18].
Retransmitting packets via the satellite link takes very long because of the long RTT.

If a packet gets lost and has to be retransmitted once, the time delta between first

transmission and successful reception is 1.5 RTT, which is at least 900 ms.

2.1.3.6 Congestion Control

There are two mechanisms that control the transmission rate and influence the

utilization of the channel: Flow control and congestion control. The flow control

depends on how fast the receiver can process the data buffered in the receive-buffer.

It can be used to signal the sender that it should throttle the transmission rate, when

the receiver is too slow. Using a satellite connection instead of a terrestrial has

virtually no effect on it.

This is different to congestion control, which is used to avoid overload in the

network. Its efficiency usually highly depends on the RTT because it exploits in-

formation inferred from ACK packets sent from the client to the server to estimate

the bottleneck bandwidth7 of the channel. Once estimated, the congestion win-

dow (cwin) is adapted in order to control, how many bytes are “in flight”, i.e.,

7Again, we are using the term “bottleneck bandwidth” because “bottleneck data rate”, which would
be correct, is not used in literature
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sent but not yet acknowledged. If the bottleneck bandwidth is underestimated, the

channel is not used to full capacity; if it is overestimated, buffers overflow and the

network gets congested (see Section 2.1.3.3). Finding the optimum is quite hard

because it can change at the moment, when a new flow starts or stops competing for

data rate. After the congestion collapse in 1986 [19], when no Congestion Control

Algorithm (CCA) has been used on the Internet, plenty of algorithms have been

developed. They are visualized in Figure C.1 in the appendix. All of them usually

start transmitting with a small initial congestion window (iwin) that is increased

(usually exponentially) upon the reception of ACKs. This mechanism is called slow

start. It works well on networks with small RTT, when the transmitter receives the

ACK shortly after transmitting the packet. On links with high delays, like GEO links,

conventional CCAs may need very long to increase the cwin, given that they do not

run in timeouts when such high RTTs are not expected.

Regarding decreasing the cwin due to congestion there are two major categories

of CCAs as shown in Figure C.1: Loss based, which are the classic ones, and delay

based, which are more modern (see Section 2.2.4). Loss based CCAs, like (New)Reno

and CUBIC, start to reduce the transmission after experiencing packet losses, i.e.,

when the buffers overflow (see Sections 2.2.1 and 2.2.3). The late reaction to the

overloaded network has severe impact on the performance: Usually the transmission

rate is heavily reduced (e.g., by factor 1
2 ) and slowly increased upon reception of

ACKs [19], which takes much time on GEO links, as said before. Another problem of

loss based algorithms is that every packet error is taken as indication of congestion.

But especially in wireless networks errors might also be caused by temporary effects

on physical layer like collision with packets of other clients.

In this context, it is nowadays common to use more verbose Selective Acknowl-

edgements (SACKs) instead of classic cumulative ACKs. They are defined as an

extension for TCP [20]. Traditional cumulative ACKs are used, to signal the success-

ful reception of all previous packets until a given packet number. If the sender gets

a cumulative ACK for a packet number less than the maximum packet number it has

transmitted and when it has to assume that the packet got lost, it has to retransmit

the lost packet and all subsequent packets. SACKs allow to indicate the reception of

ranges of packets, while single lost packets in between can be re-requested selectively.

This allows the sender to continue sending new packets in addition to the lost ones,

rather than repeatedly sending packets that have already been successfully received.

Thus, the performance of the transport protocol over LFNs with a high BDP can be

significantly increased.
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2.1.3.7 Performance Enhancing Proxies

When end-to-end CCAs are used, lost packets are always retransmitted via the satel-

lite link, even when the error happened in the user’s local Wi-Fi network. This

leads to large delays and unnecessary utilization of the satellite link. Additionally,

as mentioned before, TCP implementations with conventional CCAs usually do not

perform well on such connections. These are the reasons, why satellite operators

deploy Performance Enhancing Proxies (PEPs) (sometimes also referred to as Perfor-

mance Enhancement Proxies, split proxies or split-TCP) [21]. It can be differentiated

between one-sided and two-sided (distributed) PEPs, while one-sided ones are often

used in cellular communications and two-sided in SATCOM. Except PEPsal [22],
which is open-source, most PEP implementations are proprietary, and it is unknown,

how they work exactly. However, the main idea is to split the connection between

client and server into multiple smaller paths with one CCA control loop for each

segment instead of one loop for the end-to-end connection. For two-sided satellite

PEPs, one proxy is deployed in the user’s modem and the other one at the gateway

SYN

SYN,ACK

ACK,req

ACK,response1

response2

m
response3,FIN

Client PEP PEP Server

High Latency LinkSYN

SYN ACK’
SYNACK,request

ACK’ request
SYN

SYN ACK

ACK’,request

resp1,ACK

response2

resp3,FIN
ACKACKresponse1

response2

response3,FIN
ACK’,FIN’

response1

ACK
resp3,FIN

resp2
m

NACK

response2’,FIN’

ACK,FIN

Figure 2.4 – Basic Functionality of a PEP. SYN, ACK and FIN refer to names
of flags in TCP headers. ACKs and SYNs are spoofed, data is buffered in PEPs
and retransmissions are handled locally. The transmission without using PEPs
is drawn shaded and clipped because it would take more than twice as long.
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of the provider. An exemplary accelerated TCP communication is visualized in Fig-

ure 2.4. PEPs can work transparently for TCP because the transport information

is entirely unencrypted and unauthenticated. Thus, even users that may know the

presence of a satellite service, but do not deploy special applications, can benefit

from them. While ordinary CCAs can be used on the first and last segments, multiple

measures can be taken in between by either modifying the TCP headers or wrapping

the packets or payload into proprietary frames:

Local loss recovery: Buffer every packet locally and retransmit from the local

buffer, which is much larger than ordinary transmit-buffers, upon requests for

retransmissions.

Promise signaling: “Spoof” SYNs and ACKs to make the endpoints send data per-

manently to fill local buffers.

Suppress Duplicate Acknowledgements (DupACKs): When retransmissions are

handled locally, the congestion controller on the client side gets no DupACKs,

avoiding heavy reduction of transmission rate, as explained in Section 2.2.1.

Use an adapted CCA, that is optimized for the satellite scenario, like TCP Hybla,

which is explained in Section 2.2.2, or CCAs with higher timeouts, larger iwin

and larger maximum cwin

Compress data to reduce bandwidth.

Keeping TCP connections open, that would be closed because of larger timeouts,

especially when the link degrades for a longer period of time.

Prioritize traffic.

In theory, TCP traffic and transport layer information could also be encrypted

to secure it against eavesdropping that is possible because of the large spot beam

footprint, as explained in Section 2.1.1.3. However, no operator seems to have

implemented this [8].
While PEPs lead to a high speedup, like related research in Section 3.2 shows, it

is often criticized that they are violating the end-to-end principle of the transport

layer [23]. On the one hand this is acceptable because no endpoint modification

is required. On the other hand, this leads to ossification of Internet protocols. By

making special assumptions on the TCP behavior and packet format, new features,

like TCP RACK-TLP [24], TFO (Section 2.3.2.2) and ECN (Section 2.3.2.6) are not

supported [3]. PEPs are also limited to TCP, while VPN connections, UDP traffic and

modern transport protocols, like QUIC (see Section 2.3), can’t be accelerated.

2.1.3.8 Pacing

Another important measure at the transport protocol level that should be mentioned is

pacing [25]. It is used for both terrestrial and satellite links, and is especially relevant,
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when the BDP of the network is high [26]. When an ACK arrives at the sender, the

congestion controller can initiate the transmission of new data. If this data is sent at

a higher rate than the bottleneck bandwidth, so-called microbursts can occur, which

overload the network for a short time and cause buffer overflows, resulting in severe

throttling of the transmission rate. To avoid this, the pacing mechanism is added

after the congestion controller to smooth the packet rate. Especially in satellite

connections, where packet losses and retransmissions are expensive, data should

always be sent at a rate that is not higher than the estimated bottleneck bandwidth.

2.2 Important Congestion Control Algorithms

The question of the performance of transport protocols is often a question of the

applied CCA. Therefore, a brief overview of the most significant algorithms for

general purpose transport protocols in the SATCOM context is presented in the

following section. Most of them are built for TCP while theoretically they can also

be ported to QUIC. It has to be mentioned that different CCAs exist for multimedia

streaming protocols. Unlike generic transport protocols, such as TCP and QUIC,

these are able to adjust the source data rate, for example by transmitting lower

resolution videos.

2.2.1 NewReno

As successor of Reno, which is one of the first CCAs, NewReno [27] belongs to

the classic algorithms. The main contribution of Reno [28] is to skip slow start

and use fast retransmit followed by a fast recovery phase, when three Duplicate

Acknowledgements (DupACKs) arrive at the sender. NewReno additionally specifies

the usage of partial ACKs to allow signaling gaps in a succession of successfully

transmitted packets. While both have only a little practical relevance nowadays it is

still used for academic purposes, and it is even chosen for some QUIC implementations

because of its simplicity, as it is shown in Table 4.2.

2.2.2 Hybla

To overcome limitations of NewReno for high-latency links, Hybla [29] works similar

to its predecessor but modifies the calculation rules for the increase of cwin by

making them dependent on the estimated RTT. It was not widely adopted by satellite

operators because they already relied on PEPs [30].
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2.2.3 CUBIC

As networks developed first BIC, then CUBIC was invented for fast long-distance

networks [31]. Compared to NewReno only the sender side changed and uses a

cubic instead of a linear function over time to increase the cwin. It is now the

default CCA in Linux and seems to reach fair performance over satellite links [30].
To overcome the limitations of slow start phase, HyStart++ is currently being

developed which exploits heuristics “to exit slow start early while also mitigating

poor performance” [32]. The QUIC implementation of Cloudflare, called quiche uses

this combination8.

2.2.4 BBR

In order to make the Internet faster, Google has developed a new algorithm called

BBR, which stands for “Bottleneck Bandwidth and Round-trip propagation time”.

The model based approach takes the experienced delay into account when estimating

the network utilization. When buffers are filled more, the delays get higher (see

Section 2.1.3.3). Thus, higher delays are an indication of higher network load. Work

is currently ongoing to standardize of BBRv2 that also considers ECN flags, which

are explained in Section 2.3.2.6, and packet losses [33]. Under some circumstances

it outperforms CUBIC on satellite links, especially when the Packet Loss Rate (PLR) is

high [34]. For even better performance in the start-up phase, it can be optionally used

in combination with HyStart. Typically, new CCAs need to be more aggressive than

those already in widespread use in order to be deployed on a large scale. However,

BBR is pretty fair to CUBIC [34] and yet is already in use on more than 18 % of

the Alexa Top 20 000 websites [35]. A weakness of BBR seems to be the periodic

probing phase, where throughput periodically drops for a short time, granting data

rate to other competing connections [34].

2.3 QUIC

Even before BBR, Google started to work on a new transport protocol, called QUIC,

to replace the ossified and aging TCP. While the name was usually used as acronym

for “Quick UDP Internet Connections”9, the Internet Engineering Task Force (IETF)

decided that “QUIC is a name, not an acronym” [36].
After giving a short overview of the biggest milestones in history of QUIC, we

introduce features and extensions that are most relevant for SATCOM.

8Cloudflare blog post announcing to use CUBIC with HyStart++ in quiche: https://
blog.cloudflare.com/cubic-and-hystart-support-in-quiche/ (visited on 2021-12-22)

9Presentation of QUIC by Jim Roskind at the conference IETF 88 (transport area): https://
www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf (visited on 2021-12-06)

https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/
https://blog.cloudflare.com/cubic-and-hystart-support-in-quiche/
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
https://www.ietf.org/proceedings/88/slides/slides-88-tsvarea-10.pdf
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2.3.1 History of QUIC

2.3.1.1 Prehistory

For many years, there was no other relevant transport protocol deployed on the

Internet than TCP (for reliable transmission) and UDP (for unreliable transmission).

In 2000, SCTP was standardized [37] with many progressive features. However,

apart from WebRTC, which uses it as substrate protocol for data channels on top

of UDP, it was not widely adopted [38], but many principles have influenced the

design of QUIC later.

Also, with the desire in mind to make web browsing faster, Google developed

the Application protocol SPDY (pronounced “speedy”), which was later adopted by

the IETF and standardized as HTTP/2 [39]. Among many features that also have

not been broadly adopted, it introduces multiplexing of multiple streams using the

same TCP connection. QUIC adopted this connection pooling.

2.3.1.2 Google QUIC

Google started development of QUIC in 2012 as part of the Chromium project and in

2013 they already made early field studies [40]. It was designed as substrate protocol

for future generations of HTTP, with “the goal to provide secure and reliable low-

latency end-to-end transport” [38]. By in turn using UDP as slim substrate protocol,

it benefits from its wide-ranging support. As consequence the entire QUIC stack has

to be implemented as user space application on common systems. This is justified by

the fact that updates can be deployed faster. Similarly to HTTP/2 it provides reliable

bidirectional byte streams that allow multiplexing multiple requests on a single

connection. Better security compared to TCP is achieved by encrypting the header as

far as possible. This also hides transport information from middleboxes in order to

enforce the end-to-end principle of the transport layer. To further avoid ossification,

future extendibility is ensured by being part of the design. Many modern techniques

that are state of the science have been implemented, which enables QUIC to perform

better than TCP, under the most common circumstances (see Section 2.3.2) [40].
Until end of 2016 Google experience already about 30 % of its inbound traffic to

be QUIC while it was not even standardized yet [40].

2.3.1.3 IETF QUIC

In order to create an open standard, the project was transferred to IETF in 201510.

Major tasks were modularizing the components of the design and replacing the

Google crypto, which was embedded into QUIC, with TLS1.3 [41] [42], on which

10First draft of QUIC standard: https://datatracker.ietf.org/doc/draft-tsvwg-quic-
protocol/00/ (visited on 2021-12-06)

https://datatracker.ietf.org/doc/draft-tsvwg-quic-protocol/00/
https://datatracker.ietf.org/doc/draft-tsvwg-quic-protocol/00/
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Figure 2.5 – The Timeline of RFC 9000, the Main RFC of QUIC

standardization work was going on at the same time [40]. In 2016, the IETF founded

the new QUIC Working Group to coordinate the work on the new protocol, which

underlines the importance of this project. Over time, everything was adapted once

again, so that in the end no detail, no bit order was the same as Google’s original

design. Only the basic principles were adopted. Although the work had been going

on for a long time, it was not until 2017 / 2018 that the first satellite operators

IPv4 / IPv6

TCP

TLS

HTTP/2

HTTP Semantics

UDP

HTTP/3

QUIC

TLS

Figure 2.6 – Protocol Stack of HTTP/3
compared to HTTP/2

realized that the encryption of QUIC hides re-

quired information from PEPs, which causes

QUIC to be inefficient over satellite links11. In

May 2020, work on QUICv1 was considered

to be done, and it was released as RFCs 8999

to 9002 [36]. Until then, it was already de-

ployed by many other companies, like Cloud-

flare, which was already seeing 12 % of traffic

running over QUIC12.

The official standard for mapping HTTP se-

mantics on QUIC is still pending, but is about

to be released as HTTP/3 [43]. The entire web

protocol stack, using UDP as substrate protocol

of QUIC, TLS1.3 and HTTP/3 on top of it, is

displayed in Figure 2.6.

The emergence of QUIC shows that global players do increasingly more research

and development than academic staff. If the latter ones are still involved into stan-

dardization at all, it is only when it is wanted by industry. That is why participation

11Presentation by Tom Jones at 2nd QUIC and Satellite Open Stakeholder Meeting on 2021-12-02 https:
//erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%
20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf
(visited on 2022-01-03)

12Blog post of Lucas Pardue from Cloudflare, one of the main contributors to QUIC, about the release of
QUICv1: https://blog.cloudflare.com/quic-version-1-is-live-on-cloudflare/ (visited on
2021-12-06)

https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf
https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf
https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf
https://blog.cloudflare.com/quic-version-1-is-live-on-cloudflare/
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in standardization bodies, such as the IETF, is very important for universities and

research institutions. And, of course, the experience of companies is warmly wel-

comed. In this case, satellite internet operators have not yet been involved, but their

concerns should nevertheless be taken into account.

In the following, the term QUIC is used as a synonym for IETF QUIC as of RFC

9000, and gQUIC as a synonym for the older and by now obsolete Google QUIC.

2.3.2 Features of QUIC and their Relation to SATCOM

Like already mentioned, QUIC comes with a lot of progressive techniques, and it

was designed with state-of-the-art mechanisms in mind. Not all features that are

listed here are new. However, their adoption is facilitated by the fact that QUIC

in contrast to TCP is new and not ossified and designed to be extensible. Some

presented features are not yet standardized, but work is already in progress.

2.3.2.1 Eliminating Head-of-Line-blocking

With the principle of multiple streams at transport layer, QUIC solves the issue

of Head-of-Line-blocking (HoLB). As TCP strictly maintains the order of packets,

following problem arises: When multiple resources are being transmitted in parallel

and if packet loss prevents the transmission of one from proceeding, then all streams

are affected and cannot proceed. This is not the case for QUIC since the reliability

mechanisms are applied on stream level, which allows for example that a website

is being transmitted while the transmission of a single embedded object, like an

image, encounters packet loss. This design approach was copied from SCTP, and also

HTTP/2 tried to address this issue but only solved it on application layer because

TCP is used as substrate protocol.

On connections with high delays, like satellite connections, solving this issue

enhances the Quality of Experience (QoE), since it is perceived as if websites load

faster [4].

2.3.2.2 1-RTT, 0-RTT and 0-RTT-BDP Handshakes

To reduce the Time to first Byte (TTFB) it is crucial to open connections quickly.

TCP requires a 3-way handshake (consisting of SYN, SYN-ACK, ACK, while the last

ACK packet can already carry data). TLS1.2, which is deployed on top of TCP, when

in use, requires in the default case an additional 2-RTT handshake to negotiate

cryptographic parameters. Thus, it takes at least 3 · RT T to open a connection

(see Figure 2.7a). QUIC manages to open connections using 1-RTT handshakes

by allowing attaching data to the last packet of the handshake and by integrating

TLS1.3 into the transport layer [36] [42] (see Figure 2.7b). TLS1.3 requires only
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Figure 2.7 – Significantly Improved Time to Perform a Default Handshake in
QUIC Compared to TCP with TLS by Using a 1-RTT Handshake.
SKEx: Server Key Exchange; CKEx: Client Key Exchange; CCS: Change Cipher
Spec; Cert: Transmission of Certificate;

one round-trip for new connections and zero round-trips for subsequent ones. In

addition, QUIC can be extended to allow resumed connections to be initiated with a

so-called 0-RTT handshake, which means that parameters from previous connections

are stored and reused. Both endpoints agree on them in the first packet while data is

already attached to it. A mechanism similar to QUIC’s 0-RTT was already developed

for TCP as TCP Fast Open (TFO) [44]. However, due of the ossification of the Internet

it is not yet widely deployed.

In the satellite context with one RTT being at least 600 ms, the time for a default

handshake could be reduced from 1800 ms to 600 ms, which is remarkable and

seems to have a big impact at least for small websites and files (see Section 3.2).

As described before, ramping up the congestion control packet rate and estimating

path parameters, like BDP, takes some time, especially on paths with high delay,

such as satellite links. However, the parameters are required to allow efficiently

utilization of the path. The estimations could be skipped on connection resumption

if the endpoints used previously estimated parameters again. To achieve this, work

is underway on an extension called 0-RTT-BDP [45]. The idea is, to negotiate

previously determined parameters during connection establishment.

2.3.2.3 Path MTU Discovery

In order to optimally utilize the path, estimating the Maximum Transmission Unit

(MTU) supported by the end-to-end link by using Path MTU Discovery (PMTUD) is
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highly recommended13. The RFC allows choosing between explicit PMTUD, which

uses ICMP messages and is defined for IPv6 [46] and IPv4 [47], and Datagram

Packetization Layer PMTUD (DPLPMTUD), which uses probe packets [48]. These

techniques already existed before, but as they are highly advised for QUIC, they will

more likely be adopted. When satellite operators choose to provide a high MTU,

good QUIC implementations will recognize it and achieve a better performance.

2.3.2.4 ACK Decimation

There are two drafts, [49] and [50] that are currently being worked on to decrease

the ACK traffic in cases where the return path is limiting the performance because of

the asymmetry of the link, as explained in Section 2.1.3.2. The idea is to define a

ratio and send only one packet with ACK frames per n data packets or at fixed time

intervals. While this is not yet ready to use, the future extendibility of QUIC makes

it at least possible to implement these features.

2.3.2.5 Improved Congestion Control

Many details in the congestion control area have been tuned, but the principles

are not new. E.g., QUIC makes use of already existing CCAs, but does not define

which ones to use. However, the modularized design makes it possible to switch

them easily and deploy more modern ones, like BBR (see Section 2.2.4), when the

implementation supports it.

Among others the following things were adjusted:

Eliminating the retransmission ambiguity: When a sender retransmits a packet in

TCP it uses the same packet number again. Thus, the receiver can not determine,

whether an ACK packet belongs to the original or the retransmitted packet, and

it can not estimate the current RTT. This is solved by using strictly monotonic

packet numbers, even for retransmissions [25].

Increasing the ACK range: This allows to re-request packets more precisely [25].
For TCP, there are only three SACK ranges which is very little for high BDP

paths with high loss and leads to dreaded timeouts.

Pacing: Pacing is explained in Section 2.1.3.8. It is now strongly advised, to use it

in combination with QUIC’s congestion controller14.

Probe Timeout: Following the design of Recent Acknowledgement-Tail Loss Probe

(RACK-TLP [24]), QUIC uses a mechanism called Probe Timeout (PTO) to send

probe packets after a certain timespan, when it suspects that a packet has

been lost. This is especially important at the end of a transmission, when no

13“An endpoint SHOULD use DPLPMTUD or PMTUD” [36]
14“A sender SHOULD pace sending of all in-flight packets based on input from the congestion con-

troller.” [25]
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subsequent packets are sent anymore and losses can’t be detected by holes in

ACK ranges.

2.3.2.6 Explicit Congestion Notification

As mentioned in Section 2.1.3.6, loss based CCAs use packet losses as indication of

congestion. To avoid this level of escalation and to make CCAs throttle their transmit

rate earlier in times of Bufferbloat, Active Queue Management (AQM) algorithms

like Random Early Detection (RED) [51] or derivates of it have been proposed to

actively drop packets out of the queue when the load increases. However, this

measure still seems relatively harsh to many network administrators, which is why

it was rarely activated in the past15.

Another mechanism to signal congestion more explicitly is Explicit Congestion

Notification (ECN) [53]. Again, this already exists independently of QUIC, but

RFC 9002 makes the usage of ECN messages mandatory for QUIC [25]. When the

network devices support it, they can set the ECN-CE (“congestion experienced”) flag

in the IP header of packets that are sent to the receiver, when the buffer levels are

high. The QUIC implementation at the receiver side will in turn inform the sender

to throttle down the transmission rate.

2.3.2.7 Packet Level Forward Error Correction

Not yet standardized, but suggested multiple times ([54], [55]), is the idea to

introduce Forward Error Correction (FEC) on the packet level. A coding rate RC =
k
n

can be defined to complement data packets with parity packets. The scheme ensures

that when (n− k) parity packets are added to k data packets, and at most (n− k)
packets get lost or corrupted, all data can be reconstructed at the receiver. Whether

the additional data overhead is useful, must be decided on a case-by-case basis,

since FEC is already present on the physical layer (see Section 2.1.3.5). This can be

useful for example for real-time applications where a round-trip dependent recovery

is unacceptable [55]. And especially in the SATCOM context it can help to further

reduce expensive retransmissions by improving robustness of single streams.

15Jim Gettys summed up reasons, why RED was often not activated in 2010: https://
gettys.wordpress.com/2010/12/17/red-in-a-different-light/ (visited on 2021-12-11). An-
other reason might be that the paper “RED in a Different Light” by Jacobson et al. [52] was never
accepted because it contains an “offensive image” of a toilet.

https://gettys.wordpress.com/2010/12/17/red-in-a-different-light/
https://gettys.wordpress.com/2010/12/17/red-in-a-different-light/


Chapter 3

Related Work

Those who cannot remember the past are condemned to

repeat it.

George Santayana

As we have seen in Section 2.1.3.7, PEPs can not accelerate QUIC because

all the relevant transport layer information is encrypted and thus inaccessible for

middleboxes. Without any external tuning, it is up to QUIC to determine path

properties reliably and to perform well. In this chapter, we first explain common

terms and metrics and then review previous research findings on the performance

of QUIC in SATCOM context. Evaluations of QUIC via ordinary links are not part of

this summary.

3.1 Terms and Metrics

Because QUIC was designed as transport protocol for browsers, the built-in browser

metrics are used for many measurements. The metrics follow the interface specifica-

tion of Navigation Timing16. It defines points in time that are relevant for the loading

process of a website. Some of them depend on the performance of the transport

protocol. Figure 3.1 visualizes a very simplified loading process of a website. On the

timeline on the client side, the relevant points in time as defined in the specification

are written in orange. Alternative terms used in contexts other than browser metrics

are highlighted in purple. The points in time for the server side are not officially

defined, and we assigned custom names.

16W3C® Navigation Timing Specification: https://www.w3.org/TR/navigation-timing/ (visited
on 2021-12-17)
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Figure 3.1 – Common Metrics for Transport Protocol Measurements in the
Context of Browsers

When a user navigates to a new website, the browser will do plenty of tasks, such

as querying the local cache or resolving DNS names, which are neglected here. After

that, the browser will open a new connection on the transport layer to the target

server at t = connectStart. Normally, the client can send the HTTP request to the

server about one RTT later at t = requestStart. The server will then process the

request and send back the first response packet at t = 1st response TX, which arrives

at t = responseStart at the client. This point in time is also referred to as Time to

responseStart (TTR) or Time to first Byte (TTFB). After that, the requested data is

being transferred to the client. The last packet is sent out at t = last response TX and

arrives at t = responseEnd, which is also called Time to last Byte (TTLB). Depending

on the browser, the data will already be processed during reception. The processing

is done at t = Page Load Time (PLT) and the website is displayed completely.

For modern interactive websites with dynamic content, however, these metrics

have hardly any relevance for the performance as it is perceived by users. In that

case, especially the PLT does not correlate with the user-perceived speed [4]. Instead,

there are metrics that take visual impression of websites into account, for example

the points in time of the first and last visual change of the page or when the page

is loaded for 85 % because then it is often perceived as completely loaded. To

collect these metrics, entire systems consisting of proper browsers and representative

websites, have to be measured, and the results have to be analyzed statistically. For

more low-level approaches, it is usually enough to transmit test data and measure

the time to completion. During the transmission, the gross data rate, i.e., the rate of
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transferred user data, which is also referred to as goodput, is also representative for

the performance of the transport protocol.

3.2 Related Papers and Measurements

Table 3.1 gives a very compact overview of relevant research on this topic. A more

verbose version of this table is attached at Appendix D and also available online17.

Table 3.1 – Overview of Related Research on QUIC Performance via Satellite
Links.

Reference
QUIC

Version
Client Server

Type of
Benchmark

Type of
Link

A© Rula
2018 [56] ?© ?© ?© Websites emul.

B© Yang
2018 [57]

gQUIC
Q035

chrome quic-go Website emul.

C© Zhang
2018 [58]

gQUIC
Q039

chrome
Google QUIC

test server
Websites emul.

D© Wang
2018 [34]

gQUIC
Q039

chrome
Google QUIC

test server
Websites emul.

E© Thomas
2019 [59]

gQUIC
Q039

chrome
67

Google
Server

File real

F© Deutsch-
mann

2019 [5]

gQUIC
Q043

chrome
69

chrome
quic-go

File real

G© Fairhurst
2019 [60] draft-20 quicly v20 Files real

H© Wolsing
2019 [4]

gQUIC
Q043

chrome
70

Google QUIC
test server

real
Websites

emul.

I© Mogildea
2019 [61]

Q046
draft-22
draft-22

chrome
quicly
ngtcp2

File
real,
emul.

J© Border
2020 [62]

gQUIC
Q046

chrome
77

Google
Drive

File
real,
emul.

K© Kuhn
2020 [18]

gQUIC
?©

chrome
67

Google
Server

Websites real

L© Custura
2020 [63]

draft-27
draft-26

quicly
chrome

File
real,
emul.

M© Kuhn
2021 [64] ?© picoquic File emul.

17Full table of related research at GitHub: https://github.com/sedrubal/QUIC_HIGH_BDP/blob/mas-
ter/research_overview.md

https://github.com/sedrubal/QUIC_HIGH_BDP/blob/76ab9cc036a0a039e5a550a02263aad198428c06/research_overview.md
https://github.com/sedrubal/QUIC_HIGH_BDP/blob/76ab9cc036a0a039e5a550a02263aad198428c06/research_overview.md
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Published papers and presentations at meetings of the IETF have been taken into

account. The table and the sections below are ordered chronologically and linked

with the letter in the first column. A “gQUIC” entry in the version column means that

the old Google QUIC was used (see Section 2.3.1.2), while versions starting with

“draft-” reference the version of the IETF draft of QUIC (see Section 2.3.1.3). We

are not yet aware of any research that uses QUICv1. “Website(s)” in the column Type

of Benchmark indicates that real world or artificial websites with embedded objects

have been transferred using QUIC, while “File(s)” means that only single objects

of a given size have been transmitted. In the column Type of Link, we differentiate

between emulated or real satellite links. Information that could not be obtained is

marked with “ ?©”.

3.2.1 A© Mile High WiFi: A First Look At In-Flight Internet Con-

nectivity

In this paper, Rula et al. analyze in-flight communication systems, which are currently

deployed to provide Wi-Fi in airplanes and usually perform poorly [56]. One tech-

nology, called Mobile Satellite Services (MSS), uses satellites as relays to connect to

the GS. This causes challenging path characteristics with an RTT of roughly 760 ms

and a loss rate of 6 %. (Symmetric) data rates are usually at about 1.89 Mbit/s.
Compared to satellite connections, where the user’s equipment is fixed, the loss rate

seem to be higher in the airplane scenario and the data rate seems to be lower than

what is usually offered by providers. The test bed for the measurements consists of

an emulated link using NetEm (see Section 4.1.2). The CDFs of PLTs of downloads

of different artificial web pages is compared between HTTP/1.1, HTTP/2 and QUIC.

Rula et al. conclude that QUIC outperforms HTTP/1.1 in large parts, and HTTP/2
performs poorly at high loss rates. However, apart from proxies that cache content,

PEPs do not seem to have been considered.

3.2.2 B© Performance Analysis of QUIC Protocol in Integrated

Satellites and Terrestrial Networks

Yang et al. simulate several network scenarios involving terrestrial and satellite links

to assess the performance of QUIC in such integrated networks [57]. The networks

contain LEO and GEO satellites and are implemented in MATLAB and the Satellite

Tool Kit (STK). A range of RTTs up to 500 ms are simulated, which is less than the

usually observed RTTs. The data rate is 10 Mbit/s at different loss rates in the range

of 0 to 3 %, which is quite realistic. Google Chrome is used as client and quic-go

as server to establish the gQUIC connection. Again, the resulting CDFs of PLTs are

compared to HTTP/2 over TCP. The conclusion is that QUIC outperforms TCP in all
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scenarios, except during handovers in LEO networks because of a faster handshake.

However, this conclusion is questionable, as the complexity of the simulated network

is very high and important parameters and configurations are either not given or

confusing. Additionally, the comparison to TCP is misleading because most likely

PEPs were not used in these test environments.

3.2.3 C© How Quick Is QUIC in Satellite Networks

Zhang et al. claim to provide the first measurements of QUIC performance via

satellite links [58]. They use NetEm to emulate GEO links with RTTs of 200, 400 or

600 ms, data rates of 256 kbit/s, 512 kbit/s or 1 Mbit/s and different BERs. Except

of the slightly low data rate, these values are appropriate. Again, Google Chromium

is used as client and the Google QUIC test server that was part of the proto-quic

repository, as server, to download websites of different sizes. Unfortunately, the

resulting PLTs are compared to an HTTP stacks using TCP without PEP. This puts

the finding into perspective that QUIC outperforms HTTP/TCP, especially when

propagation delays are large and PLRs are high.

3.2.4 D© Performance Evaluation of QUIC with BBR in Satellite

Internet

Figure 3.2 – Throughput of QUIC with CUBIC vs. QUIC with BBR at different
PLRs at a data rate of 10 Mbit/s, a file size of 10 MB and an RTT of 600 ms.
Taken from [34]

This is a follow-up paper of C©, but now with the focus on gQUIC in combination

with the CCA BBR (Section 2.2.4) instead of CUBIC (Section 2.2.3), as in the previous

measurement [34]. Wang et al. use the same setup as before, but they further

increase the BER up to 2 ·10−1 and increase the data rate up to 10 Mbit/s. This time,

the achieved goodput is compared between Chrome with BBR and Chrome with

CUBIC, with the result that BBR outperforms CUBIC by far in high loss scenarios (see
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Figure 3.2). However, the periodic probing phases of BBR reduce the performance

significantly, and they give CUBIC the opportunity to steal data rate, when both are

in competition with each other, like Wang et al. show in a second test bed.

3.2.5 E© Google QUIC performance over a public SATCOM access

Thomas et al. provide measurements in a realistic scenario by using a real GEO

satellite access (KA-SAT PRO25Go), Google Chrome as client, the Google 404 website

(with embedded objects) and some image served by Google (5.3 MB) as payload, and

a PEP-setup to accelerate TCP connections that is used in production. By enabling

TFO (see Section 2.3.2.2) in the “HTT” stack (HTTP/2, TLS1.2, split-TCP), the

protocol stacks are comparable. 0-RTT in the “HQU” (HTTP/2, gQUICv39 with

BBR, UDP) stack is enabled, but was not used. The satellite link has 25 Mbit/s
in the forward link and 5 Mbit/s in the return link at an RTT of 750 ms. Browser

metrics (PLT, TTR and elapsed time) are used to compare the protocol stacks, and

every measurement was repeated on a 4G connection for reference. Additionally,

sequence-number plots are provided (see Section 5.6.1). The authors conclude

that the performance of QUIC in the satellite scenario is poor because of the non-

delegated congestion controller, and the faster connection establishment does not

compensate this issue.

3.2.6 F© Satellite Internet Performance Measurements

Another paper using real satellite links is this one by Deutschmann et al. [5]. The

main focus is on evaluating the performance of different HTTP versions via three

different end user satellite Internet solutions (Avanti PLC, SES Astra and Eutelsat

Tooway). The asymmetric links have data rates of 6/2 Mbit/s or 15/30 Mbit/s
(forward / return link capacity), but they were black box tested to assess the Quality

of Service (QoS) as experienced by users. Measurements show that all operators

reach the advertised throughput values, while 2 operators show high UDP delay

variations, which results in bad QoS for QUIC. Different combinations of connections

with or without TLS, with different HTTP versions or QUIC, and with or without VPN

as substrate protocol, have been tested. The authors assume that PEPs accelerate

TCP connections without VPN. For QUIC, Google Chromium was used as client

and the Google Chrome test server and quic-go were used as servers. Some users

of satellite internet use OpenVPN to encrypt the traffic in order to mitigate the

security threat presented by large satellite footprints. However, it also prevents PEPs

from accessing TCP headers. Both a large file and artificial websites are used as

payload and boxplots of PLTs are compared. Plenty of insights can be drawn from

the results shown in Figure 3.3: The two more round-trips required by TLS1.2 are

clearly visible compared to unencrypted HTTP/1.1. When using VPN below TCP, the
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Figure 3.3 – PLT of a Large-Sized Website Using Different Protocols and
Operators. Taken from [5]

performance is worse than the performance of plain TCP connections accelerated

by PEPs. One operator could be identified who throttles the data rate of single

flows, which leads to worse performance of HTTP/2 compared to HTTP/1.1 because

browsers create only a single TCP flow per server, when HTTP/2 is used. Providers

should consider this limitation for QUIC flows as well. The PLT for QUIC connections

is—as expected—worse than the PLT for TCP via PEP connections, but better than

for TCP via VPN connections, which also uses UDP as substrate protocol.

3.2.7 G© Measuring QUIC Dynamics over a High Delay Path

Fairhurst et al. presented interesting measurement results at the IETF 105 conference,

but we are not aware of an associated scientific publication [60]. This is the first

measurement in this collection which uses an early draft version of IETF QUIC instead

of gQUIC. They measured the elapsed time and created packet-number-vs-time-plots

(see Section 5.6.9.2) for transmitting files of different sizes using quicly (with Reno),

TCP (with CUBIC, SACK and TLS1.2 / TLS1.3) and TCP (same configuration) via

OpenVPN. Again, a real satellite link was used, which was measured beforehand.

The observed throughput is 8.5/1.4 Mbit/s and the RTT is 639 ms on average. The

impact of the faster handshake of TLS1.3 could be verified for small transfers and

also the advantage of plain TCP over QUIC in presence of PEPs.
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3.2.8 H© A Performance Perspective on Web Optimized Protocol

Stacks: TCP+TLS+HTTP/2 vs. QUIC

Comparing different protocols is difficult because the results highly depend on the

level of optimization of the implementations. On account of this, Wolsing et al. use

an optimized version of TCP, which is already quite similar to QUIC, and compare it

with Google QUIC (Chromium & Google Chrome test server) [4]. Following features

have been used and optimizations have been done on the TCP stack: TLS1.3 (with

shorter handshakes as TLS1.2); BBR with pacing; increased iwins; tuned buffers;

slow-start-after-idle disabled. The main focus of the paper is not only SATCOM, but

various challenging scenarios, which also include MSS, as it was described in A©.

The same path parameters are used again to simulate the network and again no PEP

is used for TCP connections. By simulating web browsing on real websites using the

Mahimahi framework, visual browser metrics, which reflect the user’s perception,

are collected. The main result is that QUIC still outperforms the optimized TCP, as

far as browser metrics are concerned because of the reduced RTT design and the

elimination of HoLB. And in the MSS scenario, where a PLR of 6 % is common, BBR

performs better than CUBIC.

3.2.9 I© QUIC over Satellite: Introduction and Performance Mea-

surements

To highlight the differences between different QUIC implementations and also be-

tween different satellite operators, Mogildea et al. present a test matrix of three

real satellite links (SES Astra, Avanti PLC and Eutelsat Tooway) plus one emulated

connection (using dummynet, see Section 4.1.2) and three QUIC implementations

(chrome, quicly and ngtcp2) plus an HTTP/2 stack using TCP [61]. While chrome

uses the old gQUIC, the latter ones are using an early draft version of IETF QUIC. The

implementations also differ in the CCA. The providers advertise their links with a

data rate between 16 to 30 Mbit/s in the forward link and 2 to 3 Mbit/s in the return

link. All of them have PEPs installed. The emulated link is configured for an RTT of

600 ms and an asymmetric data rate of 20/2 Mbit/s. Sequence/offset-number-plots

(see Section 5.6.1) are provided for the transmission of a file of 1 MB for a loss-free

and a lossy scenario with a PLR of 1 %. While the performance depends strongly

on the implementation and also a bit on the provider, it decreases significantly for

implementation in the lossy scenario.
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3.2.10 J© Evaluating QUIC’s Performance Against Performance

Enhancing Proxy over Satellite Link

Like others did before, Border et al. present satellite link measurements of the in the

meantime outdated gQUIC with HTTP/2 and PEP-accelerated HTTP/1.1 [62]. This

time, very large file downloads (1 GiB) from Google Drive, where QUIC was already

deployed in production at that time, are analyzed by using box plots of the achieved

goodput. Using servers that are not under own control has the disadvantage that

only limited information about the configuration can be provided. Two different

test beds are considered: One with real satellite equipment and a link emulator,

which introduces losses, between the client PC and the client terminal, to emulate

the case when Wi-Fi is used on this path. The second one is entirely emulated and

does not contain a PEP. Both connections have an RTT of roughly 600 ms and the

PLRs are between 0 and 1 %. The results are in line with the previous ones that

gQUIC outperforms plain TCP connections, especially at higher loss rates, but it can

by far not reach the performance of PEP-accelerated TCP connections.

3.2.11 K© QUIC: Opportunities and threats in SATCOM

With the target audience of Satellite Internet Service Providers (ISPs) in mind, Kuhn

et al. deliver a strengths, weaknesses, opportunities, and threads (SWOT) analysis of

end-to-end QUIC from satellite-operators point-of-view. [18]. In the paper, they also

provide measurement results by using the same setup as described in E©. Different

websites are downloaded via a real satellite link and sequence plots (see Figure 3.4)

and PLTs are used to analyze the results. The analysis confirms previous findings that

QUIC performs better than TCP for small files since fewer round-trips are required to

establish the connection. For larger files, TCP outperforms QUIC by factor 2, while

the TTR is slightly smaller for QUIC. QUIC with BBR seems to need more time to

Figure 3.4 – Sequence Number Plots of TCP and QUIC Using a Real Satellite
Link. Taken from [18]
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get up to speed in loss free scenarios (4 s) because of the probing phase, while BBR

with TCP takes only 50 ms as it only needs to probe the short link between the user

and the PEP.

Regarding the SWOT analysis, Kuhn et al. draw following conclusions:

Strengths: QUIC brings performance improvements for small pages due to the

reduced time required for handshakes.

Weaknesses:

• QUIC can not be made to recover losses locally (e.g., by using

PEPs), and losses are first detected one round-trip later.
• Congestion and flow control at endpoints is sometimes unsuitable

because thus link capacity is reached very slowly.

Opportunities:

• PEPs can be removed.
? Reduces cost of network infrastructure.
? New features can be deployed faster.
? End-to-end security is improved
? Resiliency of mobile scenarios is increased.

• Extensibility of QUIC

Threats: ISPs lose control of performance, which could lead to operators

locking out QUIC traffic.

3.2.12 L© Impact of Acknowledgements using IETF QUIC on

Satellite Performance

Figure 3.5 – Download Time for a 100 kB File Using TCP and QUIC Over a
Broadband Satellite IPOS Service. Taken from [63]

In order to analyze the impact of ACK rates on the performance of IETF QUIC

via asymmetric links, Custura et al. present measurements over emulated and real



3.2 Related Papers and Measurements 33

satellite links [63]. Quicly (with Reno) and Google Chromium (with BBR), which

switched to IETF QUIC at that time, are used as client and server. The emulated link

has an RTT of 600 ms, an asymmetric data rate of 8.5/1.5 Mbit/s and a PLR of 1 %,

while the real link was measured and has an RTT of about 630 ms, and an effective

data rate of 8.5/1.5 Mbit/s. The results are compared to a TCP stack (Reno) with

a PEP on the real satellite connection. While for the TCP stack HTTP/2 is used,

the IETF QUIC stack uses HTTP/3 respectively an early version of it. The box plots

provided for the PLTs for downloading a 100 kB file in Figure 3.5 are in line with the

results shown before. Additionally, the authors conclude that a reduced rate of ACKs

in the return link subsystem “can in some cases improve forward path performance,

without impacting congestion control performance” [63].

3.2.13 M© Feedback from using QUIC’s 0-RTT-BDP extension over

SATCOM public access

The last measurement in this collection was presented by Kuhn et al. at the conference

IETF 111 [64]. To evaluate the gain achieved by using the 0-RTT-BDP extension,

which is currently being designed (see Section 2.3.2.2), they used picoquic18 to

transmit files in the range of 0.5 to 100 MB via a satellite connection that is emulated

using the OpenBACH framework (see Section 4.1.1). Different RTTs up to 500 ms

and a large range of data rates are emulated, and the elapsed time and the percentage

of the utilized bandwidth are measured. The evaluation is very limited, and some

questions remain unanswered since it is only a presentation and not a scientific

publication. However, the effect of using 0-RTT instead of 1-RTT can be clearly seen

and using 0-RTT-BDP instead of 0-RTT brings an additional gain of roughly the same

magnitude. The gains, though, are highly dependent on the file size.

3.3 Summary of Related Measurements

Although several efforts have been invested to evaluate the performance of QUIC

in the SATCOM context, the conclusions of many research papers are often limited:

In many cases, either emulated or real satellite links are used, but they are rarely

compared with each other. We also see that the test environments are very heteroge-

neous, and the metrics vary (visual browser metrics, time to completion, goodput).

Even the methods of measurement hardly provide comparable results: Some use bulk

18Picoquic has support for the 0-RTT-BDP extension in two different variants:

• Storing parameters at the server: https://github.com/private-octopus/picoquic/pull/
1204

• Using BDP_FRAMEs: https://github.com/private-octopus/picoquic/pull/1209

(Both links visited on 2021-12-22)

https://github.com/private-octopus/picoquic/pull/1204
https://github.com/private-octopus/picoquic/pull/1204
https://github.com/private-octopus/picoquic/pull/1209
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transfers, others use websites, whereby particularly websites can be very different, as

there is no such thing like a “typical website”. Some papers do not provide relevant

parameters, like the CCA and other configurations. Another limitation is that mostly

only single implementations were used, with Google Chrome / Chromium being

the most common choice. Additionally, all implementations are under development

and the QUIC protocol itself was not yet released for all measurements except the

last. However, the results are always interpreted to be representative for QUIC as

a protocol in general while the impact of differences between implementations is

neglected, which is very high though, as we see in Chapter 5. While there have been

many studies on the performance of gQUIC, few have used IETF QUIC, although a

lot has changed: Web stacks with IETF QUIC use HTTP/3 instead of HTTP/2 and

TLS1.3 instead of custom crypto. When comparing QUIC with TCP, one must also

keep in mind that TCP has been around for many years and is more mature, while

QUIC has not been optimized for so long. Furthermore, TCP has many parameters

and extensions and comparing a new protocol with it is difficult, as the performance

of TCP depends highly on the configuration.

However, most research draws the same conclusion that QUIC usually performs

much better than TCP wrapped in an UDP-based VPN and slightly better than plain

TCP, especially in lossy scenarios. But it performs much worse than PEP-accelerated

TCP. The main reason for this seems to be the high delay of satellite links. For very

small amounts of data, QUIC has an advantage because of the reduced handshake.

The performance further depends on the CCA, while BBR seems to outperform

CUBIC in lossy environments.

3.4 Suggested Improvements

Some papers provide suggestions on how the poor performance of QUIC via satellite

links could be mitigated. Kuhn et al. recommend using a more aggressive conges-

tion control on satellite links to ramp up the package rate much faster [18]. Based

on the current experience, implementations should ensure using 0-RTT whenever

it is possible. Because of the high BDP, increasing buffer sizes helps to increase

the link utilization. Furthermore, an efficient way of local loss recovery has still

to be found. However, Kuhn suggests pushing forward packet level FEC (see Sec-

tion 2.3.2.7), optionally in combination with proxies, as it will be explained in

Section 6.1. Jones et al. recommend increasing the maximum cwin and the iwin

and using pacing [3]. As soon as the return link becomes the limiting component,

Custura et al. recommend reducing the ACK ratio [63]. For high loss scenarios,

Wang et al. and others are suggesting BBR as CCA [34].



Chapter 4

Architecture

Any sufficiently advanced technology

is indistinguishable from magic.

Arthur C. Clarke

As we saw in Section 3.3, there is a need in running comparable measurements

with numerous QUIC implementations to assess the performance of the QUIC proto-

col. Therefore, an automated test bed and evaluation framework was developed,

which is presented in this chapter.

4.1 Existing Tools and Benchmark Frameworks

Before describing our own work in Section 4.2, we briefly give an overview of existing

tools and test frameworks that are commonly used for research on networking and

protocol performance. Some of them form the basis of our work.

4.1.1 OpenSAND and OpenBACH

Open Satellite Network Demonstrator (OpenSAND)19 and Open Benchmark Automa-

tion tools for Communication and Hypervision (OpenBACH)20 are two open-source

frameworks that are developed and often used by the French space agency cnes and

Thales Alenia Space. Both tools are designed to be able to interact with each other.

OpenSAND is a satellite network emulator from the physical layer up. It covers

the network stack from the physical layer like DVB-S2 upwards but can also be

interconnected with real equipment and IP-based networks. It should act as a

reference environment for scientific research with the focus on communications

19Project Homepage of OpenSAND: https://opensand.org/ (visited on 2022-01-03)
20Project Homepage of OpenBACH: http://openbach.org/ (visited on 2022-01-03)

35

https://opensand.org/
http://openbach.org/
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engineering, and provides a user-friendly configuration and monitoring solution.

However, it is generally unsuitable for research at the protocol layer because too

many low-level details are taken into account, which sometimes cause higher layers

to behave non-deterministically in our experiments.

OpenBACH can be used to supervise and control networks under test. It aims to

provide modular, user-friendly and web-based tools to manage the deployment of

SATCOM systems, and to design, configure, schedule, monitor and analyze bench-

marks on them. Both real and emulated links (e.g., by using OpenSAND) are sup-

ported. For the nodes and components of the framework, either dedicated machines

or VMs are required which seems very ponderous compared to the solution we

present in Section 4.1.6. Under the hood, it uses production-grade open-source

tools, like Ansible21 for deployment and orchestration, Grafana22, InfluxDB23 and

the ELK-stack24 for data processing and result analysis. On the one hand, it is quite

powerful and even sophisticated series of measurements can be configured, on

the other hand, it supports only a limited set of benchmarks and implementations.

We need to be able to run the same benchmarks with numerous implementations.

While it would be possible to extend it, the benefit of having a graphical interface to

configure the tests is not worth the work required.

4.1.2 NetEm and dummynet

NetEm [65] and dummynet [66] are two network emulators that act on packet

level, which are similar in design and often used for research purposes, but also in

production for bandwidth management. The first one is part of the Linux Kernel, the

second one of FreeBSD and Mac OS X. Both can be used to emulate a link with poorer

properties than the underlying physical or virtual one. The most relevant configurable

parameters are data rate, delay and PLR. The networks can be configured using the

command line tools tc or ipfw, which instruct the kernel to set up queues and pipes,

respectively, with the desired properties. Because of their seamless integration into

the systems both tools are a good choice for network emulation but require some

knowledge about the network stacks of the kernels.

4.1.3 ns-3

ns-325 is an open-source discrete-event network simulator for Internet systems, which

is designed to be used in research and education [67]. It provides a simulation core

and modules that can be used to program custom network scenarios in C++ or

21Ansible: https://www.ansible.com/ (visited on 2021-12-11)
22Grafana: https://grafana.com/ (visited on 2021-12-11)
23InfluxDB: https://www.influxdata.com/ (visited on 2021-12-11)
24ELK-stack: https://www.elastic.co/de/what-is/elk-stack (visited on 2021-12-11)
25ns-3: https://www.nsnam.org/ (visited on 2021-12-12)

https://www.ansible.com/
https://grafana.com/
https://www.influxdata.com/
https://www.elastic.co/de/what-is/elk-stack
https://www.nsnam.org/
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Python. Apart from routing algorithms and models for wireless communication,

such as Wi-Fi, it also includes tracing capabilities allowing to record e.g., Pcap

files. While it provides tools to set up entire virtual simulation environments, it can

also be interconnected with the real world in a real-time mode, enabling the use

of real-world protocol implementations. On the one hand, ns-3 is quite powerful,

but on the other hand, it is rather complex to implement simple channels, like a

point-to-point connection with a specific data rate, delay, and PLR. However, as it

was already used by the QUIC-Interop-Runner presented in Section 4.1.6, we use

ns-3 as network emulator in our setup.

4.1.4 Wireshark, TShark, Pyshark and Tcpdump

The Swiss army knife for network analysis, Wireshark26, brings dissectors for gQUIC

as well as IETF QUIC. While the support is still under development, the current ver-

sion 3.6.0 has proven to be stable (and mostly feature complete) in our experiments.

It can be used for live capturing and offline analysis of capture files, like Pcap and

Pcap NG. Apart from the GUI program, there is also a set of command line tools,

like editcap and tshark. We use the first one to bundle key-log and Pcap files into

Pcap NG files, which makes it easier to handle them. Key-log files contain secrets and

can be exported by most TLS libraries, like they are used by QUIC implementations.

Wireshark can use them to decrypt QUIC headers and payload. There is a Python

wrapper around tshark, called pyshark27, which allows automated and headless

analysis of capture files using the powerful dissectors and filters of Wireshark. We

experienced some problems with it because parsing large traces is very slow and

requires much memory.

In our decentralized test setup with real satellite links, we use tcpdump28 instead

of ns-3 to capture traces, as explained in Section 4.2.2. We also use it in the simulated

setup for some experiments to overcome a bug in ns-3 tracing29 that leads to cut-

short Pcap files. Unfortunately, tcpdump has no support for filtering QUIC traffic as

of version 4.99.1, which is not a big problem, as it allows filtering on protocol and

port basis. More accurate filtering can be done using pyshark.

4.1.5 qlog and qvis

A downside of the encryption of QUIC is that it is harder to analyze and debug.

Therefore, a uniform logging-format, called qlog, is currently being defined [68].
Client and server implementations need to implement support for it. The logs contain

26Wireshark: https://www.wireshark.org/ (visited on 2021-12-12)
27pyshark: https://github.com/KimiNewt/pyshark (visited on 2021-12-12)
28Tcpdump: https://www.tcpdump.org/ (visited on 2021-12-12)
29ns-3-issue on GitLab: https://gitlab.com/nsnam/ns-3-dev/-/issues/102 (visited on 2021-

12-12)

https://www.wireshark.org/
https://github.com/KimiNewt/pyshark
https://www.tcpdump.org/
https://gitlab.com/nsnam/ns-3-dev/-/issues/102
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internal states and events of the endpoints, which are otherwise not accessible, when

packets are intercepted on the wire, as it is the case for traditional packet capturing.

While the specification is format-agnostic, mostly JSON is used as representation.

And even if the logging-format was invented with QUIC as primary use-case, it is

designed to be protocol-agnostic. The event definitions for QUIC are specified in [69].
By using a uniform and implementation independent format, it is possible to create

reusable debugging tools and visualizations, like qvis30. This is a browser-based tool

to generate a variety of visualizations for traces of QUIC and HTTP/3. It is for example

possible to create interactive offset plots, like they are presented in Section 5.6.1,

which are however very detailed and slightly overloaded. Using qlog for analyzing

will be a good choice in the future because it works independently of Wireshark

support, but right now not all QUIC implementations support logging of qlog-files

reliably. And, as the specification is work-in-progress, not all implementations use

the same version of the specification. Additionally, the timestamp of an event, when a

packet is sent off or received, is generated in user-space, but the kernel or hardware

may slightly delay the transmission and reception. This is not a problem when

capturing packets on the wire.

4.1.6 The QUIC-Interop-Runner

In order to automate interoperability testing of publicly available QUIC implemen-

tations, Marten Seemann created the QUIC-Interop-Runner (QIR)31. Every client

implementation is tested with every server implementation three times per day and

several checks are performed, like if a handshake completes successfully, or if 0-RTT

works (see Section 2.3.2.2). Additionally, very basic measurements have been added

in order to assess the performance, when different implementations have to work

together. The results are presented online as interactive tables. As we use this tool

as a basis for our measurement environment, the following sections describe its

method in more detail.

4.1.6.1 Terms and Mode of Operation

First, we define the terms that describe how the QIR works. The runner is invoked

to fill the result matrix. This matrix has a column for each server implementation

and a row for each client implementation. Thus, each cell belongs to a combination

of implementations. For each run of the interoperability runner, either all or only

a subset of test cases and measurements can be selected. Test cases, or simply tests,

are of secondary relevance in this thesis, and we focus mainly on the measurements,

as they are listed in Table 4.3. We also refer to them as measurement test cases or

30qvis: https://qvis.quictools.info/ (visited on 2021-12-22)
31The QUIC-Interop-Runner: https://interop.seemann.io (visited on 2021-12-13)

https://qvis.quictools.info/
https://interop.seemann.io
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scenarios because they define different scenarios implementations will be faced with.

The test cases and scenarios, which are defined as Python classes, specify the desired

setup, the link parameters, like data rate, delay and queue sizes, and the checks that

are performed after the execution. As the measurements and test cases share the same

setup code, we also sometimes refer to both simply as test case. In the following, we

highlight the names of them using SMALL CAPITALS, to avoid confusion with other

terms, like “goodput”, which is sometimes used as the name of the measurement and

sometimes as the metric of net data rate. We refer to the execution of a single test

case with a tuple of implementations as test run or experiment. Measurements are

repeated multiple times for the same combination of implementations. Every single

iteration is also referred to as experiment or measurement iteration.

For each test case and each combination of implementations, a record is kept of

whether it has been successful, unsuccessful or whether the test case is unsupported.

For measurement test cases, the average of the achieved goodput over all iterations is

recorded. The results are then added to the corresponding cell in the result matrix.

4.1.6.2 Architecture
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The runner is open-source32 and implemented in Python. It uses Docker33 with

virtual networks to deploy the entire test environment on a single host machine (see

Figure 4.1). Most test cases require a setup of three containers: The QUIC client

implementation, the QUIC server implementation and a link emulator in between.

For special test cases, additional containers can be deployed, as it is the case for

CROSSTRAFFIC where the performance is measured while other connections compete

for data rate. Every creator of a QUIC implementation who wants its implementation

to be added to the interoperability matrix must provide a Docker image that uniformly

deploys their implementations. Parameters for the implementations are passed in

through environment variables. Most images use wrapper scripts to translate the

variables to command line flags for the implementations. Before each run, QIR

checks the compatibility of each image, i.e., it checks, whether the images respect

the environment variables and are using the correct exit codes. For the link emulator,

different ns-3 scenarios (see Section 4.1.3) are used, which are also open-source34.

When the tests are performed, Docker Compose35 is used to deploy the scenario.

Therefore, a docker-compose.yml template file is adapted by using environment

variables. Once all containers are up and running, it relies on the images the creators

of the implementations provide to use the TLS keys and certificates that are passed

in through the volume /certs, and log to /logs. Servers have to serve files with

random content from the volume /www and clients have to download them to the

volume /downloads, preferably by using the very simple HTTP/0.9 protocol, which

has a minimal overhead36. During the run, ns-3 is used to capture packets on the

wire into Pcap files. The traces are then analyzed using pyshark and the results are

exported to a JSON file.

Currently, Marten Seemann uses shared GitHub Actions runners to perform the

official benchmarks. Getting accurate information about the infrastructure is difficult.

According to the docs37 Ubuntu 20.04 VMs are used with 2 CPU cores and 7 GB of

RAM memory. The VMs are hosted in the Microsoft Azure cloud. Depending on the

utilization of the machines, most notably on the CPU steal time, high variations in the

measurement results are to be expected. Additionally, it is not known whether there

are any modifications applied on the Kernel that are relevant for the performance

of QUIC, like UDP-buffer parameters (rmem_max, rmem_default). Most likely it

32Repository of QIR on GitHub: https://github.com/marten-seemann/quic-interop-runner
(visited on 2021-12-13)

33Docker: https://www.docker.com/ (visited on 2021-12-13)
34Repository of Network Simulator for QUIC benchmarking at GitHub: https://github.com/

marten-seemann/quic-network-simulator (visited on 2021-12-13)
35Docker Compose: https://docs.docker.com/compose/ (visited on 2021-12-13)
36Discussion about using HTTP/0.9 as protocol: https://github.com/marten-seemann/quic-

interop-runner/issues/267 (visited on 2021-12-13)
37GitHub Actions Runner documentation: https://docs.github.com/en/actions/using-

github-hosted-runners/about-github-hosted-runners (visited on 2021-12-13)

https://github.com/marten-seemann/quic-interop-runner
https://www.docker.com/
https://github.com/marten-seemann/quic-network-simulator
https://github.com/marten-seemann/quic-network-simulator
https://docs.docker.com/compose/
https://github.com/marten-seemann/quic-interop-runner/issues/267
https://github.com/marten-seemann/quic-interop-runner/issues/267
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners
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has no influence for functionality testing, but it is questionable if the measurement

results can be compared with other measurements.

4.1.6.3 Implementations

At time of writing, QIR supports the most significant and publicly available imple-

mentations of QUIC, as listed on the wiki page of the IETF QUIC working group38.

They are managed in a JSON inventory and shown in Table 4.1. All implementations

with both in the column Role can work as client and as server, which is the majority.

There are two exceptions: The popular browser chrome, which can only act as client,

and the well-known web server nginx, which can only act as server. The leading

https://github.com/ was omitted for GitHub repository URLs. As we collected

the versions by inspecting the Docker images by hand, not all versions could be

determined for sure. These entries are marked with a ?©. Hexadecimal versions

with a leading @ are commit hashes in the corresponding git-repository.

Table 4.1 – Implementations used in QIR

Name Role Repository on GitHub / URL Version

aioquic both aiortc/aioquic 0.9.17

chrome client
marten-seemann/

chrome-quic-interop-runner
ChromeDriver
89.0.4389.23

kwik both ptrd/kwik
@a9e478c

(Nov 2021, 03)

lsquic both litespeedtech/lsquic ?©

msquic both microsoft/msquic ?©

mvfst both facebookincubator/mvfst ?©

neqo both mozilla/neqo 0.4.21

nginx server https://quic.nginx.org/ 1.21.4

ngtcp2 both ngtcp2/ngtcp2 0.1.0-DEV ?©

picoquic both private-octopus/picoquic
@8dfc4776

(Oct 2021, 23)

quant both NTAP/quant 0.0.34 ?©

quic-go both lucas-clemente/quic-go 0.23.0

quiche both cloudflare/quiche ?©

quicly both h2o/quicly
@699e2564

(Nov 2021, 10)

xquic both Kulsk/xquic ?©

38The wiki page of the IETF QUIC working group that lists important implementations of QUIC.
https://github.com/quicwg/base-drafts/wiki/implementations (visited on 2021-12-13)

https://github.com/aiortc/aioquic
https://github.com/marten-seemann/chrome-quic-interop-runner
https://github.com/marten-seemann/chrome-quic-interop-runner
https://github.com/ptrd/kwik
https://github.com/ptrd/kwik/commit/a9e478c
https://github.com/litespeedtech/lsquic
https://github.com/microsoft/msquic
https://github.com/facebookincubator/mvfst
https://github.com/mozilla/neqo
https://quic.nginx.org/
https://github.com/ngtcp2/ngtcp2
https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic/commit/8dfc4776
https://github.com/NTAP/quant
https://github.com/lucas-clemente/quic-go
https://github.com/cloudflare/quiche
https://github.com/h2o/quicly
https://github.com/h2o/quicly/commit/699e2564
https://github.com/Kulsk/xquic
https://github.com/quicwg/base-drafts/wiki/implementations
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Table 4.2 – Implementations and their CCAs

Name CCA HyStart

aioquic NewReno m

chrome BBRv2, CUBIC ¢

kwik NewReno m

lsquic BBR, CUBIC m

msquic CUBIC m

mvfst BBR, CUBIC, NewReno, . . . ¢

neqo CUBIC, NewReno m

nginx ?© m

ngtcp2 BBRv2, BBR, CUBIC, Reno m

picoquic BBR, CUBIC ¢

quant NewReno m

quic-go CUBIC ?©, Reno ?© m

quiche CUBIC ¢

quicly CUBIC, Reno, pico m

xquic BBR, CUBIC, Reno m

It has to be mentioned that some implementations are not built for performance.

Some target energy efficiency in the context of IoT, others are built for debugging

purposes, like the server implementation of neqo, and others are just drafts or proof-

of-concepts. While they are not representative for the performance of the QUIC

protocol itself, using multiple implementations is better than picking a single one

and making general conclusions.

Accordingly, the choice of the CCA is quite diverse. While RFC 9002 [25] suggests

using a modified version of TCP NewReno, it is also allowed to implement any

other CCA (see Section 2.2). Many implementations, especially the more optimized

ones, employ CUBIC or BBR or even support multiple algorithms, as it is show in

Table 4.2. The default CCAs of each implementation, which is (most likely) used in

our measurements, is written in bold. We determined the algorithms and defaults by

analyzing the source code, the command line flags and the log output by hand. Thus,

there might be some missing or wrong entries. Some implementations might also

use modified versions of the algorithms we determined. Missing entries or entries

with high uncertainty are marked with a ?©.

4.2 Modifications to QUIC-Interop-Runner

In order to use QIR as a performance measurement test bed which also supports

real links, some things had to be changed. In this section, we mention the most

important modifications and new features we introduced.
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4.2.1 New Simulated Measurement Test Cases

There is already one SATCOM related test case included in the official QIR. It is called

LONGRTT, and it checks whether a QUIC connection can be established via a link

with a large RTT of 1500 ms. This is significantly larger than RTTs, which usually

occur on links via geostationary satellite links. However, in worst case scenarios

such RTTs are possible, as explained in Section 2.1.3.3. The simulated symmetric

delay, buffer queue sizes and data rate of 10 Mbit/s in both directions are artificial

and unlikely to be found in a real scenario though.

In addition, there are only two measurement test cases, i.e., tests where the

performance rather than the success of tests matters: One is called GOODPUT. In this

case, the average goodput is measured for the transfer of a large file. We use these

values as reference for our new measurements. The other one is CROSSTRAFFIC.

There the goodput is measured in the case, when another transmission, in this case

iperf, is competing for data rate. Because the channel parameters chosen for this

scenario are not related to SATCOM and because the goodput highly depends on the

type of competing traffic (CCA, number of parallel transmissions, . . .), we disregard

this measurement.

4.2.1.1 New ns-3 Scenario

To emulate links that are similar to satellite links, we had to implement an asymmetric

ns-3 scenario, which supports setting different parameters in the forward and return

eth eth

m

ploss, f wd

m

ploss,ret

forward queue

lqueue, f wd

return queue

lqueue,ret

r f wd

r f wd

d f wd = dret =
RT T

2

ns-3

Figure 4.2 – Visualization of the Asymmetric ns-3 Scenario
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path. It is open-source and available online39. Figure 4.2 illustrates the mechanism

of this scenario. The two interfaces, one of which is connected to the client and

one to the server, are connected with two unidirectional links. For each of them,

the queue size lqueue, the data rate r, and the packet drop probability pdrop can

be configured. Additionally, the delay d, which is half of the RTT, is set for both

directions. Using this model we added the emulated measurement scenarios SAT

and SATLOSS.

4.2.1.2 Parameters for New Measurements

The parameters of all test cases and measurement scenarios are displayed in Table 4.3.

SATLOSS is basically the same as SAT, but with a PLR of 1 %. The artificial losses are

distributed uniformly (we do not use a sophisticated error loss model). In both cases,

the data rate is 20 Mbit/s in the forward link and 2 Mbit/s in the return link, so that

it corresponds to the advertised data rates of ASTRA. Unfortunately, this is different

to the data rate of GOODPUT where 10 Mbit/s are used in both directions. We did

not want to change that parameter because we wanted to be able to compare our

results with the results that are produced using the original QIR. Though, as typical

satellite links are asymmetric, we had to choose different values for the satellite

scenarios, anyway, and 20/2 Mbit/s are at least in the same magnitude. The RTT is

set to 600 ms, which is the default used in literature presented in Chapter 3. Given

these parameters, we can calculate the BDP as RTT
2 · rfwd for each scenario, as shown

in the table. In all measurements, i.e., each scenario in the table except LONGRTT,

a 10 MiB file is transferred. While this is roughly 100 times as large as the BDP

in the GOODPUT scenario, it is only twice the BDP in the SAT, SATLOSS and ASTRA

Table 4.3 – QIR Test Cases and Measurements with Relevance for SATCOM.

Name RTT
Data
Rate

PLR
Time-
out

Min.
Goodput

Min.
Efficiency

BDP

[ms] [Mbit/s] [%] [s] [Mbit/s] [%] [MiB]

LONGRTT 1500 10 0 60 — — 7.2

GOODPUT 30 10 0 60 1.4 14 0.1

SAT 600 20/2 0 120 0.7 3 5.7

SATLOSS 600 20/2 1 360 0.2 1 5.7

ASTRA §600 20/2 ¯0.1 120 0.7 3 5.7

EUTELSAT §600 50/5 ¯0.1 120 0.7 1 14.3

39Network Simulator for QUIC benchmarking with an additional asymmetric link scenario.
https://gitlab.cs.fau.de/sedrubal/masterarbeit/quic-network-simulator/-/tree/
feature-asymmetric-p2p/ (visited on 2021-12-14)

https://gitlab.cs.fau.de/sedrubal/masterarbeit/quic-network-simulator/-/tree/feature-asymmetric-p2p/
https://gitlab.cs.fau.de/sedrubal/masterarbeit/quic-network-simulator/-/tree/feature-asymmetric-p2p/
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scenarios and even less than 1 · BDP in the EUTELSAT scenario. The test payload is

much larger than a usual website, but it is a realistic value for file transfers. While

QUIC was designed for HTTP, it will most likely also be used for other purposes in

the future, like file transfer, WebRTC or even IP-Tunnels (see Section 6.1), which is

more similar to the scenario of bulk transfers. Furthermore, the aim of using large

files was about being able to analyze both large and small file transfers, with the

transfer of a smaller file being roughly equivalent to the first few seconds of the

transfer of a large one. However, the probability of an error is higher for larger files.

Therefore, the comparability is limited.

4.2.1.3 Timeouts

The execution of all tests in the official interoperability matrix takes about two

hours. Most experiments are functionality tests that only take a few seconds to

run. As we added a lot of long-running measurements, the execution time to fill

the entire matrix rose significantly to several days. Therefore, each test run will be

terminated after a certain period of time. Because of the challenging parameters of

the new measurement test cases, much higher timeouts were chosen compared to the

timeouts used for the already existing measurements, as it is listed in Table 4.3. The

relatively small value for the scenario called GOODPUT is adopted from the official

QIR. There are different reasons for measurements to time out: Either the endpoints

may be inactive or in a faulty state and nothing will change, when the timeout is

increased. Or the performance is so bad that it takes too long to transfer the test

data. Table 4.3 also calculates the minimum required goodput to pass the test cases.

As the timeouts are chosen quite generously, it is safe to quit the execution after the

timeout is reached, and consider the test case as failed, as such a poor goodput will

hardly be useful in real world scenarios.

4.2.1.4 Measurement Iterations

In order to get more reliable results, we increased the amount of iterations of each

simulated measurement test case for the same combination of server and client from

5 to 10. Measurements using a real satellite connection, as explained in the next

section, are only repeated 5 times to avoid running into rate limits. Unfortunately,

increasing the iteration count has a negative side effect: As a series of measurements

for the same implementation combination and the same scenario is aborted upon the

first failed iteration, the probability that there is at least one failed one, is increased

by increasing the amount of iterations. This leads to slightly more failed entries in

the result matrix. In the future, the runner should be modified to execute the same

number of iterations for each combination and simply count the failed experiments.
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4.2.2 Distributed Deployment for Non-Emulated Links

Besides SAT and SATLOSS we also added two scenarios, which use a real satellite link

instead of a simulated one. There is one main computer which is used as controller

and as host for the server implementation, and there is one client computer per

satellite access where the client implementation has to be executed. Docker Compose

works only for a single host if it is used the way it was used before. Therefore, it was

necessary to transform the part of QIR, which handles the deployment of the Docker

containers. We replaced it with direct API calls to the Docker daemon by using the

Python Docker library docker-py40. It comes with built-in support for remote Docker

daemons that can be accessed via SSH. Each test case can now optionally specify

an SSH-connect-URL for the deployment of the client implementation. The new

approach for distributed scenarios is shown in Figure 4.3. Instead of virtualized

networks, the containers for the endpoints are now bridged to the host network.

The server is then accessible via the public IP address of the host. In order to find

the public IP address that can be reached from the host of the user implementation,

all available addresses are probed automatically by spinning up a minimal server on

the host before starting the measurements. This works automatically by using the

existing SSH connection opened by docker-py. The determined IP addresses are also

used for the check of the captured traces after the measurement.

While the packets can be captured by ns-3 in simulated scenarios, we have to use a

second tcpdump container per endpoint, which joins the network of implementation

under test, to capture all packets that pass through the network. The original design

of QIR depended on Docker bind-mounts to access traces, logs and other files from

Server

Tcpdump

pcap, qlog, keylog

Client

Tcpdump

logs

Modem Internet

Link

QUIC Interop Runner
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call

de
pl

oy
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Docker

de
pl

oy

Client Host

control

Figure 4.3 – Distributed Architecture of Modified QIR

40docker-py on GitHub https://github.com/docker/docker-py (visited on 2021-12-14)

https://github.com/docker/docker-py
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the containers. As bind-mounts also only work for a single host, we replaced them

by “docker container cp”-API calls though docker-py. Thus, the Python library

seamlessly handles the transfer via SSH for remote hosts.

We experienced some difficulties with the default limit for parallel sessions in

OpenSSH. The value of MaxSessions had to be increased from 10 (default) to about

50.

By using this approach we extended the set of measurements with ASTRA and

EUTELSAT. Some details about the satellite accesses are shown in Table 4.4 and

in the sections below. More detailed analysis of the links can be found in [11].
We additionally added support for Starlink, but running measurements on it and

evaluating the results is out of scope of this thesis.

All vendors provide IPv4 connectivity using carrier-grade NAT, but none supports

IPv6 so far. The client computers, the modems, and the dishes are deployed at the

roof of the tower for computer science of the University of Erlangen (Martensstr. 3,

D-91058 Erlangen), and no obstacles are in the line of sight. According to previous

measurements [11] the RTT for both ASTRA and EUTELSAT is usually in the range

of 600 to 1000 ms and the PLRs are less usually less than 0.1 %. The advertised net

data rates are reached. Unfortunately, these values are not monitored during the

measurements, but no indications for deviations have been found, as explained in

Section 5.7.4.

4.2.2.1 The ASTRA Measurement Test Case

For ASTRA, we are using Novostream Astra Connect L+41. While this is with roughly

55€ per month the largest offer, there are also cheaper ones with traffic limits. The

geostationary satellites are operated by SES Astra and deployed at 28.2° East. They

provide coverage all over Europe.

Table 4.4 – Measurements with Real Satellite Access

Test
Case

Provider
& Tariff

Advertised
Data Rate

Traffic
Limit

Modem IPv6

ASTRA

Novostream
Astra Connect

L+
20/2 Mbit/s —

Gilat
SkyEdge

II-c
m

EUTELSAT
Konnect

Zen
50/5 Mbit/s

prioritization
up to
60 GB

Hughes
HT2000W

m

41Novostream Astra Connect sales website: https://www.novostream.de/produkt/astra-
connect/ (visited on 2021-12-15)

https://www.novostream.de/produkt/astra-connect/
https://www.novostream.de/produkt/astra-connect/
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4.2.2.2 The EUTELSAT Measurement Test Case

The satellite access for the measurement EUTELSAT is Eutelsat Konnect Zen42 which

is operated by Eutelsat. To provide broadband services in Europe and Sub-Saharan

Africa it uses a modern HTS satellite at 7.2° East. It was built by Thales Alenia Space

and became operational in 202043. The planned life cycle is 15 years, so QUIC will

likely be one of the most used internet protocols during that time. We are using the

medium-sized offer for about 50€ per month with a soft traffic limit of 60 GB of

prioritized traffic. As mentioned in Section 5.7.4, we did not exceed this limit with

our measurements.

4.2.3 Efficiency Metric

The original version of QIR uses the goodput that was achieved by the combination

of implementations, as result of a measurement. It is defined by the size of the

transmitted file divided by the time between the reception of the first and the last

packet, as shown in Equation (4.1). Since the differences in data rates between

the scenarios are very large, as can be seen in Table 4.3, the absolute goodput

value is not useful anymore to compare the performance in different scenarios.

Therefore, we have implemented the measure of efficiency η in the QIR as defined in

Equation (4.2), which is simply the achieved goodput normalized to the maximum

possible net throughput of that forward link.

goodput=
file size

trec, last packet to client − trec, first packet to client
(4.1)

η=
goodput

r f wd
(4.2)

We are assuming that the available data rate of the return link has no impact on the

goodput and can be neglected, which seems to hold according to our observation

in Section 5.6.9.1. The website that visualizes the measurement results uses the

efficiency to highlight the results in color. Figure A.1 shows a partial screenshot of

the modified website.

In order to be more precise, the formula could be extended to Equation (4.3),

to respect the influence of non-zero PLRs. However, for the sake of simplicity this

minimal difference is omitted.

ηexact =
goodput

r f wd ·
�

1− ploss, f wd

� (4.3)

42Eutelsat Konnect sales website: https://konnect.com/ (visited on 2021-12-15)
43Eutelsat Konnect information website: https://www.eutelsat.com/en/satellites/eutelsat-

7-east.html#eutelsat-konnect (visited on 2021-12-15)

https://konnect.com/
https://www.eutelsat.com/en/satellites/eutelsat-7-east.html#eutelsat-konnect
https://www.eutelsat.com/en/satellites/eutelsat-7-east.html#eutelsat-konnect
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A weakness of this metric is that it neglects a commonly observed phenomenon:

The impact of increasing the RTT by a given factor is usually worse than decreasing

the data rate by the same factor44. However, we are able to qualitatively verify

this phenomenon when GOODPUT is compared to SAT or when SAT is compared to

EUTELSAT in Chapter 5.

4.2.4 Additional Features and Functionality

A lot of further small modifications have been applied to the codebase of QIR.

Noteworthy is the ability to shuffle test runs and measurement iterations to avoid

that temporal interferences negatively influence all measurement results of a single

implementation combination. Instead, such temporal effects now have virtually no

influence on the average results.

To avoid the periods of higher utilization of the satellites in the evenings, as

explained in Section 2.1.3.3, we added the possibility to pause measurements

during a given time period. This is very useful because the measurement of all

implementations takes several days.

The result matrix is written to a slightly complex JSON file. We added a powerful

parser library that is furthermore able to modify the content of the results. In that

way, we could modify the runner to resume aborted runs, which is very helpful for

development purposes, but also because the execution takes very long due to the new

measurement scenarios. It is also possible to retry failed experiments. This feature

should only be used when a measurement failed because of bugs or reasons that

are not caused by the implementation. Otherwise, the test results will be falsified,

especially when measurements are retries which timed out before.

For reasons of reproducibility, we additionally store information about the

docker images of the implementations, like the image ID and the image repository

digests, which distinctively describe the exact image. On resumption, it is checked

that the same images as before are used again.

To make the output of the runner on the terminal more clear, it was restructured,

and it is now colored. Many components of the modified QIR can also be run as

standalone programs, which spawn interactive shells for debugging.

For evaluation of the large measurement data, we developed tools to render

plots for each and every trace in the interoperability matrix of an interoperability

run. The tools are able to generate different plots. However, the most useful ones

are offset number plots, as explained in Section 5.6.1. To create them, we parse

all Pcaps that are captured on the client and on the server side using pyshark. In

order to infer additional information from the traces, like the TTFB, TTLB and the

44Document by Mike Belshe: “More bandwidth doesn’t matter (much)” https://goo.gl/X8rE6Q
(visited on 2021-12-20)

https://goo.gl/X8rE6Q
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points in time, when the first and the last packet was sent by the server, we try to

match the packets from both traces. If that works, we also try to find eligible packets

to determine the current RTT. The heuristically determined information is used to

additionally annotate the plots. The tools are built to use multiple processes, but

analyzing all Pcaps and rendering all plots still took several weeks. The reason is

that it is very slow to load the traces into Python objects.

4.2.5 Environment

All measurement mentioned in the next chapter have been performed on the follow-

ing systems:

The simulated scenarios have been executed on an Ubuntu 20.04.3 LTS server

with Kernel 5.4.0. Docker (version 20.10.10) was configured to use overlay2 on extfs

as storage driver, runc version v1.0.2 as container runtime, apparmor and seccomp

(Profile: default) as security options (no SELinux), and cgroupsv1. The server is

powered by an Intel® Xeon® X5650 CPU launched in Q1 2010 which supports

SSE4.2 but not AVX. The system has 16 GiB of RAM installed.

For measurements with real satellite connections, the server implementations

have been executed on the aforementioned machine. The clients have been run on

other computers, which are connected to the modems of the satellite link. These

computers run Ubuntu 18.04.6 LTS with kernel 5.4.0. Docker (version 20.10.7)

is configured similar to the main server but with runc v1.0.0. Both computers are

powered by an Intel® Core™ i5 4590 CPU (launch date Q2 2014 with support for

SSE4.2 and AVX2) and 8 GiB RAM each.



Chapter 5

Analysis

The first time you do something, it’s science.

The second time, it’s engineering.

The third time, it’s just being a technician.

Clifford Stoll

Using the modified QIR described in Section 4.1.6 we ran measurements for the

most relevant QUIC implementations that are currently publicly available. In this

chapter, we first present the result matrices in the style of the result tables of the

original QIR. After discussing reasons for failures, we first evaluate the measurement

results on a statistical basis, then we examine traces of individual implementations.

An evaluation of the quality of the results concludes the chapter.

5.1 Measurement Result Matrices

As explained in Section 4.2.1, among the test cases of the original QIR, one named

LONGRTT is relevant for SATCOM. To be able to compare the own measurement

results with that ones from the official setup, the GOODPUT measurement was used for

reference. Additionally, we added four new measurement scenarios, one simulated

scenario without losses, one with an artificial loss rate of 1 %, one using SES Astra

as real satellite link and one using Eutelsat.

The results of our tests and measurements are visualized as heatmap in Fig-

ure 5.1. For the LONGRTT test case, the binary results (○ for “succeeded” and m for

“failed” or “not supported”) are shown in Figure 5.1a. All other matrices belong to

measurements. The average of the achieved goodput values for multiple iterations

of the same scenario with the same combination of implementations are displayed

as cells. Failed measurements are marked with m.

51
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Figure 5.1 – Result Matrices
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We tried to automatically determine the reason for failed measurements because

unfortunately the QIR does not store this information in a machine-readable form.

Measurements that most likely failed because of timeouts, are marked with T . The

reasons for other failures are explained in the next section. For better readability, we

omit chrome and quicly in Figures 5.1c to 5.1f, since they always fail, as explained

below. We analyze these results in detail in the following sections.

5.2 Failed Experiments

Before analyzing the succeeding test and measurement results we briefly have a look

at the failed ones.

5.2.1 Unsupported Implementations

5.2.1.1 Chrome

The wrapper script run_endpoint.sh, which is packaged in the Docker image for

chrome, filters out unsupported test cases. As defined by QIR all implementations

have to exit with return code 127 if they do not support a specific test case type.

At time of writing, chrome supports only the HTTP3 test case even with the official

QIR. It is probably very difficult to support a broader range of test cases because

ChromeDriver, which is used to run the Chrome browser in a headless mode, only

exposes a limited set of flags to control the QUIC behavior. Measurements using

chrome are of high interest since according to statistics about usage share of web

browsers45 numerous users use this implementation for everyday Internet browsing.

On the other hand, Google Chrome as QUIC client has already been often used for

measurements, as shown in Chapter 3.

5.2.1.2 Quicly

According to the logs that are available at https://interop.seemann.io the test

cases for quicly usually fail during the compliance check for various reasons. In our

experiments, the implementation does not even start regardless whether it is used as

client or server. Instead, it immediately crashes with the message “Illegal instruction

(core dumped)”. As it works on other machines, the old hardware described in

Section 4.2.5 used to run the experiments might cause this issue. However, compiling

quicly on the target machine by building the Docker image there does not solve the

problem. It would be out of scope to debug this issue, especially because we expect

these test cases to fail anyway, as indicated by the official interoperability matrix.

45Browser statistics of Wikimedia: https://analytics.wikimedia.org/dashboards/browsers/
#all-sites-by-browser (visited on 2021-12-13)

https://interop.seemann.io
https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser
https://analytics.wikimedia.org/dashboards/browsers/#all-sites-by-browser
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For measurements using real satellite links, a computer with a more modern CPU

was used for running the client (see Section 4.2.5). On these machines the Illegal

Instruction-error does not appear, and the implementation fails for other reasons,

as it is the case on the official QIR website.

Measurements using quicly, however, can be found in [61].

5.2.1.3 Quant

Unfortunately, the pre-built server and client binaries of quant also crash on our

hardware, most likely for the same reason as quicly does, as explained in the section

before. Building the Docker image on the server used for the experiments, and

thus compiling quant for the aged target hardware architecture, solves this issue.

But many measurements time out in our setup, while they are usually succeeding

for the official QIR. As timeouts seem to happen less frequently, when quant runs

on the more modern hardware, which is used for the client in combination with

real satellite accesses, missing hardware acceleration features that are explained in

Section 4.2.5 may cause the bad performance.

5.2.1.4 Lsquic

The Docker container of lsquic depends on IPv6 to be available inside the container,

when used as server. The wrapper script passes an argument to the server executable

to listen on ::1. Both satellite operators used for measurements don’t support IPv6

and the client PCs are configured accordingly. Thus, all measurements with real

satellite links using lsquic as server failed with the message “bind failed: Cannot

assign requested address”. The Dockerfile for the QIR image is not publicly available,

so it is hard to implement a workaround.

5.2.1.5 NGINX

While the QUIC preview of the web server NGINX often succeeds for emulated

scenarios, it fails for all measurements via real satellite links. Most of them fail due

to running in timeouts. It is unclear, why this happens reproducibly for real satellite

connections but not for emulated ones.

5.2.2 Other Reasons for Single Failed Experiments

After each test run, some checks will be done to verify that the experiment succeeded.

The most frequent reasons for failed experiments are named below.
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5.2.2.1 Downloaded Files are Missing or Empty

All clients have to store the files, they downloaded from the server, to a given

directory. The downloaded files are then compared to the original files. When files

are missing or empty, the experiment fails. This indicates malfunction of one of

the endpoints, which must be debugged by the developers. This happens strikingly

often, when msquic is used as client (about 20 % of all measurements).

5.2.2.2 Key-log Files are Missing

After checking the downloaded files the Pcap traces are analyzed in order to verify

that a QUIC connection was established with the given configuration as explained in

Section 4.1.6. Additionally, for all measurements the time of arrival of the first and

last packet has to be determined to calculate the goodput, like it was shown with

Equation (4.1). To be able to decrypt the QUIC packets and access the transport

layer information, key-log files are required, as explained in Section 4.1.4. When

neither the server nor the client logged the TLS secrets, it is impossible to get this

information and the test case is considered as failed. As all implementations are

capable of logging key-logs, the lack of them indicates malfunction of the endpoints,

e.g., a failure during handshake.

5.2.2.3 Timeout

There are several experiments that time out for measurements on simulated and

real satellite links. The challenging scenarios render some implementations to fail

transmitting the test payload, or they only achieve very poor performance. More

details about timeouts are given in Section 4.2.1.3. It should be noted that if an

implementation fails in our scenarios it does not mean that it can not be used via a

SATCOM access at all, but it has difficulties to transfer a large file over such links. E.g.,

using it as HTTP API server or client might work fine. Additionally, as already noted

in Section 4.2.1.4, timeouts which are caused by spontaneous effects, like temporary

link degradation, makes QIR mark all experiments of a tuple of implementations for

the same type of measurement as failed, even if the experiments before succeeded.

This should be changed in future versions of QIR.

Neqo

It has to be noted that neqo, a client implementation by Mozilla written in Rust,

runs into the timeout for all executions of the GOODPUT measurement. Despite the

results being rather poor, it almost always succeeds for other measurement test cases.

While we could reproduce the behavior on other machines, it appears to work on

the official QIR. We could not figure out why this is the case.
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5.3 Statistical Results by Measurement

After determining the reasons for failed test cases, we now analyze the results in

more detail. First, we do that on a statistical basis differentiated by measurement.

In Figure 5.2, the measurement results of all individual experiment runs are

presented in boxplots. On the left subplot the absolute goodput values as defined in

Equation (4.1) are used whereas on the right side the values are normalized using

the relative efficiency metric as proposed in Equation (4.2).

All boxplots have their minimum value at 0 because failed experiment runs are

included with a goodput value of 0 Mbit/s respectively an efficiency of 0 %, and

there are failed experiments in each measurement as it can be seen in Figure 5.1.

There is a large difference between GOODPUT and SAT respectively SATLOSS, which

is not visible for the absolute values, but for the efficiency values on the right side

of the plot. The different proportions between the left and the right subplots are

caused by the fact that the emulated data rate in the forward path is twice as high for

SAT and SATLOSS as for GOODPUT (20 Mbit/s respectively 10 Mbit/s). The limits are

visualized using red lines. Similarly, the absolute values reached for EUTELSAT are

the highest goodput values among all scenarios (about 17.5 Mbit/s). But normalized

to the theoretical throughput of 50 Mbit/s in the forward path as defined in the

Service Level Agreement (SLA), the maximum efficiency is with less than 40 % the

smallest within all measurements. The boxplots of SAT, SATLOSS and ASTRA are

G SAT SATL AST EUT
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5.0 Mbit/s

7.5 Mbit/s

10.0 Mbit/s
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40 %

60 %

80 %

100 %
Efficiency

Figure 5.2 – Distribution of Results of all Measurements
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scaled by the same factor on the right side because the simulated data rate equals

the advertised data rate of the SES Astra connection used.

Table 5.1 shows the maximum and the mean goodput and efficiencies for each

scenario again, but expressed in numerical values. The percentage of implementation

combinations that did not succeed are listed as well. The reasons for the fails are

explained in Section 5.2. Additionally, we added the percentage of implementation

tuples that failed because they most likely ran into a timeout at least once. As

explained before, the reason for a failed test is not saved in machine-readable form.

Thus, we analyzed the log files, to calculate this value.

It can be clearly seen that, on average, the efficiency decreases significantly if the

link exhibits characteristics typical for geostationary satellites. Introducing losses

further decreases the efficiency. Switching from Astra to Eutelsat, which advertises

a connection with a throughput more than twice, does not automatically double

the goodput. Instead, the mean efficiencies reached on Astra are even about 66 %

higher than on Eutelsat. After all it must be noted that the performance of QUIC via

both simulated and real satellite links is on average extremely poor.

Besides bad results, there is also a very large number of combinations that failed

to transfer a 10 MiB file in those scenarios—for the test cases SATLOSS, ASTRA and

EUTELSAT about half of them. While at about 30 % of the fails in each measurement

scenario can be explained by missing compatibility or other reasons explained in

Section 5.2, the percentage of combinations that fail due to timeouts varies per

measurement type. The majority of timeouts in GOODPUT are caused by faulty

behavior of neqo client which was described in Section 5.2.2.3. While there are only

a few timeouts in the SAT scenario, the percentage increases drastically up to 10 %

in the lossy SATLOSS scenario. For both real satellite scenarios ASTRA and EUTELSAT,

the percentage even increases further up to about 18 % resp. 16 %. For SATLOSS,

aioquic and kwik as server cause most timeouts whereas for ASTRA and EUTELSAT,

aioquic, lsquic, nginx, and sometimes kwik as server seem to be the cause.

Table 5.1 – Overview of Measurement Results
For the columns Mean and Maximum, the absolute goodput values are in the
left column are and the relative efficiency values in the right column.

Measurement Mean Maximum Failed Timeout

[Mbit/s] [%] [Mbit/s] [%] [%] [%]

GOODPUT 8.54 85 9.6 96 35 7
SAT 4.88 24 12.0 60 28 3

SATLOSS 2.86 14 11.5 57 44 10
ASTRA 3.98 20 13.5 68 51 18

EUTELSAT 6.01 12 17.5 35 45 16
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Figure 5.3 – Swarm Plots of Mean Goodput Results for Different Measurements

The visualization of the statistical values above hides the underlying distribution

of the measurement results. In Figure 5.3, the mean goodput of each combination

is plotted separately for each measurement. Each point is colored according to the

server. Only values of successful measurements are included and for the sake of

clarity some points of the GOODPUT scenario are omitted. Also be aware that absolute

values are displayed and the emulated network in the GOODPUT scenario provides a

much smaller data rate (red line), than the others (see Table 4.3). This reveals an

interesting difference between the measurements: Apart from a very few outliers,

there is more or less only one large group of implementations in GOODPUT, which

all together achieve rather good results. However, in SAT and SATLOSS, the points

spread across a large range of goodput values. The distribution of measurement

results seems to be divided into two groups when using real satellite links, a more

compact group achieving very poor values and a stretched group achieving slightly

better to medium efficiencies. This phenomenon can be seen better at the EUTELSAT

scenario. While it is very hard to figure out the reason for this behavior, it might be

an indication that some implementations are not able to negotiate some connection

parameters or QUIC features. Being at the top of every distribution for satellite

scenarios, picoquic reaches the best and results. At least for SAT and EUTELSAT,

aioquic performs the worst.
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5.4 Analysis by Implementation

The high variances in the measurement results, we have seen before, makes it difficult

to draw general conclusions. A more detailed analysis that differentiates between

implementations has to be done.

In order to simplify the analysis, we want to verify the assumption that the

performance is mainly determined by the server implementation and that the client

is of secondary relevance. This would make sense as the server has to transmit much

more data and has to estimate the channel and especially the bottleneck bandwidth.

If this hypothesis had been correct, we would have been able to marginalize the

result matrices onto the server dimension. For this purpose, we plot the distribution

of the achieved goodput values in the SAT and SATLOSS scenarios into Figure 5.4

by using violin plots separately for each implementation. The plots for the other

measurements are attached in Appendix B. We differentiate between the results

that were achieved when the implementation was used as server (○ orange) or as

client (○ blue). To estimate the distribution of the results based on the underlying

histogram we use kernel density estimation (KDE) provided by seaborn46, which is a

Python library for data visualization. In order to avoid displaying impossible values,

like negative data rates, we clip the distributions at the maximum and minimum

observed value. Additionally, we omit failed experiments47 and implementations

that did not succeed in a significant amount of experiments for both roles.

Most server distributions (○ orange) show either one maximum at a very low

data rate, like aioquic, or in the case of lsquic, msquic, mvfst, neqo, picoquic and

quic-go two maxima with one being at a lower and the other one at a higher data

rate. In the SATLOSS case in Figure 5.4b, the upper bulge disappears for msquic, neqo

and quic-go and the performance is low overall. The narrow distribution of aioquic

can be explained by the very deterministic behavior that is shown in Section 5.6.4.

It is evident that it constantly achieves similar data rates regardless which client was

used. The distributions with two peaks indicate that the server implementation is

generally able to achieve better results. However, the server cannot compensate a

poorly performing client.

On the client side (○ blue), the variance is often very high. Lsquic, picoquic,

quant and quic-go seem to have most of their measurement results at a slightly higher

goodput as the rest. Examples for clients that constantly achieve poor results, while

the range of values achieved by the corresponding server implementation are quite

large, are kwik, mvfst and ngtcp2.

46Seaborn Documentation for violin plots that employ KDE. https://seaborn.pydata.org/
generated/seaborn.violinplot.html (visited on 2021-12-17)

47We could include measurements that have reached timeouts with a data rate of 0 Mbit/s. However,
the results are unfortunately not available in such a form that the reason for a failed test could be easily
determined. This should be improved for future versions of QIR.

https://seaborn.pydata.org/generated/seaborn.violinplot.html
https://seaborn.pydata.org/generated/seaborn.violinplot.html
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Figure 5.4 – Distribution of Measurement Results by Implementation for SAT

and SATLOSS.
The horizontal lines represent the quartiles Q1, Q2 and Q3.
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Hence, it seems that both the client and the server contribute to the overall

performance of a QUIC connection—contrary to our original assumption. In most

cases, it really depends on the combination of implementations. It has been observed

that some servers perform better than others. However, there is no guarantee that the

selection of a server of superior performance enhances the performance regardless

of the choice of the client. Likewise, using a good client may result in poor results in

combination with a bad server. Additionally, an implementation can achieve good

results in one scenario and poor ones in another. The dependency of the performance

on both endpoints is also shown by the fact that in the result matrix in Figure 5.1

you cannot see that there are rows that clearly dominate over columns, nor the other

way around. Nicolas Kuhn makes the same conclusion that both the server and the

client have a significant influence.48 Technically the impact of the client is mainly

manifested by the way it sends ACKs or by the set of features and parameters it offers

to the server.

5.5 Correlation of Measurement Results

In this section, we want to analyze the correlations of the results between different

measurements in order to find trends and interrelations of the behavior of the

implementations.

5.5.1 Behavior of Implementations in Different Scenarios

First, we relate the average efficiency values of each combination of implementations

for pairs of measurement scenarios each. Each column and each row of Figure 5.5

belongs to one measurement. The cells in the lower triangle of the grid represent

the relation of the measurement results of the correspondent test cases. The points

are colored depending on the server, due to the analysis in Section 5.5.2. On the

diagonal, where row and column belongs to the same test case, a histogram of the

achieved efficiency of that test case is plotted. The upper triangle of the grid is left

empty, as it would show the same relations as the lower left half but transposed.

First we have a look on the diagonal where the histograms of the measurement

values of each test case are located. While almost all implementation combinations

reach an efficiency value of over 80 % in GOODPUT ( G ), none of the server-client-

tuples reaches an efficiency greater than 55 % on the ASTRA measurement ( AST ),

30 % on EUTELSAT ( EUT ) and 60 % on SAT ( SAT ) and SATLOSS ( SATL ). There

is a very little amount of combinations that don’t perform well in the GOODPUT

48Early research results by Nicolas Kuhn about performance and interoperability presented at 2nd QUIC
and Satellite Open Stakeholder Meeting on 2021-12-02: https://erg.abdn.ac.uk/video/2nd%20ESA%
20MTAILS%20Satellite%20Stakeholder%20Meeting/1.3%20Performance%20implications%
20of%20interoperability.pdf slide 3 (visited on 2022-01-03)

https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.3%20Performance%20implications%20of%20interoperability.pdf
https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.3%20Performance%20implications%20of%20interoperability.pdf
https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.3%20Performance%20implications%20of%20interoperability.pdf
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Figure 5.5 – Relation of the Average Efficiency of the Same Implementation
Combinations Between Different Measurements
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measurement case, including multiple combinations with ○ neqo as server, which

can be seen in the subplots below. The high values for the GOODPUT measurement

prove that QUIC performs well on an average network path as encountered in

everyday scenarios. It also demonstrates that the implementations used for the

measurements are kind of optimized for such links. It has to be mentioned that

there is a certain limit for the efficiency values because IP, UDP and QUIC headers

are always required. A noteworthy detail already mentioned before is that the

distributions for ASTRA, EUTELSAT and SATLOSS measurements have two maxima: A

larger group of combinations that perform very poor and a smaller one that performs

better, but still not well at all as noted before.

Now we are inspecting the relational scatter plots in the lower left triangle.

Considering the subplots B©, C©, F© and L©, it is noticeable that the values

of the GOODPUT measurement are rather uncorrelated with the values of all other

measurements shown. This may indicate that an implementation optimized for a

regular terrestrial network path, does not automatically perform well on a satellite

path with a geostationary satellite.

The scatter plot A© of ASTRA and EUTELSAT measurement results shows a higher

correlation than we have seen before. Apart from a few combinations using ○ pico-

quic and ○ quic-go as server, which achieve a better efficiency on EUTELSAT than

on ASTRA, most implementations tend to achieve a higher efficiency on ASTRA than

on EUTELSAT. But as said before, all efficiencies on simulated or real satellite links

are very poor. The efficiency values on the real satellite links, ASTRA and EUTELSAT,

however, are calculated from the advertised data rates of the commercial products.

In reality, they could be much lower or vary considerably.

The relational plot between SAT and ASTRA ( D©) suggests correlation, but less

than the plot between SAT and EUTELSAT ( E©). The high correlation of the latter one

highlights the similarity of the test results from EUTELSAT measurement compared

to the simulated test results from SAT test case, which means that the simulated

scenario emulates the real scenario quite well. Similar to the comparison of EUTELSAT

and ASTRA, there are some combinations with ○ picoquic and ○ quic-go as servers

that perform better in our emulated environment (SAT) than in the ASTRA scenario.

These values are above the diagonal of equilibrium.

On the plots for SATLOSS ( H©, K©, M©) the set of data points can be divided

into two distinct subgroups: One showing quite a high correlation with the results

of ASTRA, EUTELSAT and SAT test cases and one constantly performing very bad in

the SATLOSS scenario but better in the other scenarios. The latter group contains

combinations using ○ msquic, ○ neqo or ○ quic-go as server. On the other side

○ picoquic performs remarkably better on SATLOSS than on ASTRA and EUTELSAT.

The reason might be that the PLR is higher on SATLOSS than on the real satellite
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links. No implementation performs significantly better on SATLOSS than on SAT. This

seems reasonable, as the additional loss in SATLOSS makes it more challenging.

5.5.2 Distinction by CCA

Since we expect that the CCA has a high influence on the performance, we inspect

two subplots from Figure 5.5 in more detail. We colorize the points in the scatter

plot according to the associated default CCA of the server implementation that was

analyzed in Table 4.2. In Figure 5.6, we choose the scatter plots for GOODPUT with

SAT (Figure 5.6a) and SAT with SATLOSS (Figure 5.6b), respectively.

In the first case, we can not find clusters of measurement results. While servers

with ○ CUBIC and ○ BBR seem to achieve slightly better results in GOODPUT,

compared to servers using ○ Reno and ○ NewReno, the same implementations

achieve a large range of efficiency values in the SAT case. No conclusions can be

drawn from this relational plot. In the comparison plot for SAT and SATLOSS, we

again see the two groups of measurement results, as explained in the section before:

One group of measurement results showing a correlation between both scenarios and

one achieving a larger range of goodput values in the SAT case while not performing

well in the SATLOSS case. It is evident that no servers using ○ Reno or ○ NewReno

are represented in the first group, which means that they don’t perform well in the

lossy scenario. This can have two possible reasons: If we assume poor correlation,

this can be a side effect that implementations employing more complex CCAs like

○ CUBIC and ○ BBR are also higher optimized. On the one hand, if we assume

causality, this could be an indication that QUIC performs poorly in lossy scenarios in

combination with ○ Reno and ○ NewReno.
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Figure 5.6 – Correlation of Results Colored by CCA
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5.6 Analysis of Traces

Additionally, to the analysis of overall measurement results, we created automated

scripts to draw several detailed plots of single file transfers, as already explained

in Section 4.2.4. In the following subsections, we discuss the most interesting

ones in which a particularly striking behavior of the applications can be identified.

Other plots are available online49. Unfortunately, plots are not available for every

measurement, since the mechanism depends on the implementations creating key-

log files at the specified location (see Section 5.2.2.2), on integer Pcap files (see

Section 4.1.4), on Wireshark, being able to parse and decrypt all QUIC packets (see

Section 4.1.4), and on some other constraints. E.g., it is not always the case that

implementations use the specified UDP ports and HTTP/0.9.

5.6.1 About the Offset Plots

The traces of most implementations in the GOODPUT scenario are very close to an

ideal behavior. Therefore, they are well suited to explain the plots which we have

automatically generated from the captured Pcap files. Figure 5.7 shows the offset

versus time plot and the corresponding data rate plot. To generate the plots we

normalize the timestamps of all packets to the timestamp of the first packet from the

client to the server, which is assumed to carry the (1-RTT) handshake to open a new

QUIC connection. So the first packet gets t = 0s, no matter how long the client took

to start and send the first packet. Each STREAM frame contains a chunk of the file

that is being transferred. To allow the client to reassemble the file from the chunks

even when they arrive out-of-order, each frame is labeled with the offset number

(a) Offset versus Time Plot (b) The corresponding Data Rate Plot

Figure 5.7 – A Virtually Ideal Trace Using Msquic as Client and Server in
GOODPUT Scenario

49Results of the experiments using our fork of QIR: https://interop.sedrubal.de/ (visited on
2021-12-18)

https://interop.sedrubal.de/
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within the file. We use this offset information to trace the transmission by plotting

this offset number over the time we capture it.

The goodput data rate shown in orange in Figure 5.7b corresponds to the sum

of payload data averaged over a window of 1 s. It can be thought of the derivation

of the blue offset trace curve of the left plot if there are no retransmissions and all

packets are transmitted in order. The line in red represents the raw data rate, which

includes IP, UDP and QUIC headers. In the plot above, both lines are too close to

see any difference between them.

When the information can be obtained from the Pcap files, interesting events,

like they are explained in Section 3.1, are additionally annotated in red. The trace

with median TTLB is displayed colored, while the other traces that belong to other

iterations of the same measurement, are displayed in gray.

5.6.2 The Ideal Trace

These plots can be used to investigate the behavior of the implementations in detail.

Therefore, we have to understand how an ideal trace looks like.

The delay between requestStart and TTFB should be very close to the minimum

possible delay, which is 1 ·RTT. Otherwise, this is an indication that the request is

spread over several packages or that the server takes too long to respond. After that,

the server has to start the transmission with a startup phase. It is totally fine to start

at a low data rate and ramp it up in the first few milliseconds because otherwise

networks with low BDP might congest. This slow start phase should be very short,

like in the example above where it is not even visible. At least 1 ·RTT later however,

after the arrival of the first ACK that signals that no packet was lost, the congestion

windows should be increased quickly, and the offset curve should show a strong left

curvature. Once the bottleneck bandwidth is reached, the server should continue

to transmit at a constant data rate without interruption until the last packet. This

behavior equals a straight line in the offset plot. The corresponding data rate plot

should hence ramp up in the first milliseconds until a data rate near the channel

capacity is reached. Then, the data rate should remain constant.

5.6.3 Picoquic

As mentioned before, picoquic seems to handle SATCOM scenarios very well. So we

can choose it as positive example, and have a look at its offset plot. Firstly, with

about 9 s, the time to completion is very short compared to the results of other

combinations in the SATLOSS scenario that is shown in Figure 5.8. A short slow start

phase can be observed. After being able to estimate the RTT and the bottleneck

bandwidth, the server starts to transmit at an almost constant and high data rate of

about 17 Mbit/s. Even losses are handled fine by just retransmitting the lost packets
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Figure 5.8 – Picoquic Showing High Performance Via a Lossy Satellite Link.
Packets of the trace with median TTLB are colored ○ blue respectively ○

orange, when they are re-transmitted. Packets of other iterations of the same
combination of implementations in the same scenario are colored ○ gray.

without decreasing the congestion window. At the end of the transmission it does

not wait for ACKs from the client, but immediately retransmits the last few bytes

multiple times, to get the most out of the lossy channel (see Section 2.3.2.5). We

can clearly see that picoquic seems to have some specific “SATCOM scenarios” in

mind in its design, which is what it is known for in the community.

5.6.4 Aioquic

It is very eye-catching that the offset plots of aioquic, when used as server, show a

reproducible clear, exponentially increasing curve, no matter which client is used.

For Figure 5.9, mvfst is chosen as client, but it performs quite similar with other

implementations and even via real satellite links.

In the displayed example, no retransmission was identified, and each offset is

transmitted one after another with a slightly exponential increasing rate reaching

its limit of 1.6 Mbit/s at the end. This increase is caused by NewReno (the CCA

of aioquic) which iteratively tries to approximate the link capacity based on the

knowledge inferred from ACKs. But the bottleneck bandwidth, as plotted in green, is

never reached and the CCA never switches to steady state. Instead, with more than
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Figure 5.9 – Offset versus Time of a Transmission of a 10 MiB file using Aioquic
as Server and mvfst as Client in SAT Scenario

80 s the transmission is remarkably slow. Losses (not shown here) are treated very

exemplary by aioquic as long as they are very rare. There are a few measurements

where only a single loss happened, which leads to an immediate decrease of the

transmission rate followed by a clean exponential increase. Higher loss rates as in

the SATLOSS or ASTRA case, cause aioquic to fail.

5.6.4.1 Increasing the Initial Window

To improve the performance and getting up to speed more quickly, multiple measures

can be taken, as presented in Section 3.4. One of them is using a priori knowledge

about the channel capacity and starting with a higher transmission rate by increasing

the iwin. In Figure 5.10b, the iwin of aioquic was increased by factor 5, from 10 to

50 ·MSS. Figure 5.10a is basically the same as Figure 5.9, which was shown before.

Due to this modification the time to completion can be reduced by 30 % because the

transmission already starts with a rate that is by factor 5 higher than before (about
1.2MiB

10 s ≈ 1Mbit/s instead of 0.25 MiB
10s ≈ 0.2Mbit/s). In the end, roughly 2.2 Mbit/s

�

1MiB
3.8 s

�

are reached, which, however, is still far from the bottleneck bandwidth. Of

course, the iwin can not generally be blindly increased because for normal links with

lower BDP it would lead to overshooting the bottleneck capacity, especially when

there are other competing connections. This example demonstrates the impact of
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starting with the preferably previously estimated channel parameters, which is one

of the ideas of 0-RTT-BDP, as described in Section 2.3.2.2.

(a) Unmodified Aioquic (b) Aioquic with larger initial window

Figure 5.10 – Offset versus Time Plot of a Transmission of a 10 MiB file using
Two Different Variants of Aioquic in SAT Scenario

5.6.5 Bend in Offset Plot and Pacing Behavior

Figure 5.11 – Bend in Offset Plot of Kwik & Msquic in SAT Scenario

Some traces show a noticeable bend in the middle of the transmission like the

one in Figure 5.11. The trace was generated by kwik as server and msquic as client.

As this did not occur in every iteration the TTLB varies by factor 2 between about
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20 s and 40 s. Note that this is an emulated no loss scenario. No reason could be

found for the nondeterministic behavior.

A second flaw can also be detected in this trace: If the server had used proper

pacing, there would not have been any bursts of packet transmissions, as they are

clearly visible in the trace. The gaps between the bursts can be closed, when the

packets are transmitted more smoothly with the estimated channel rate. Instead,

kwik seems to send the packets in bursts and then stops to wait for ACKs from the

client. This issue arises for most traces in the SAT scenario, when kwik is used as

server.

5.6.6 Retransmissions

Using the packets captured at server side for generating the offset traces, retrans-

missions can be detected, when the same offset number appears repeatedly. These

packets are marked in orange. In this section, different behavior caused by retrans-

missions is shown.

In Figure 5.12, we can identify different reactions to artificial losses in SATLOSS

scenario by the same implementations. The shadowed trace with the shortest time to

completion shows that the endpoints manage to transfer the chunks almost in-order

at a constantly increasing rate while resending single missing packets as soon as it is

Figure 5.12 – Different Reaction to Losses of Same Implementation in SATLOSS
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known that they did not reach the client 1 ·RTT later. In this trace, SACK seem to

perform well. However, during all other iterations the implementations seem to fail

to increase the transmission rate and there are many gaps between bursts of packets

sent to the client. It seems that the server does not continue sending new packets

until ACKs for packets shortly sent before have arrived.

Figure 5.13 shows a common behavior of measurements with very poor goodput

values in SATLOSS. Each iteration belongs to a different line with very variable

transmission rates during the experiment. It seems that the server fails to estimate

the correct bottleneck bandwidth of the channel while it mistakes the losses for

indications of network congestion and buffer overflows, which is the approach of

classical loss-based CCAs. In combination with such a high RTT, it results in a very

long time to completion.

The transmission in Figure 5.14 starts quite usual with an exponential slow start

phase, but after about 6 s, after sending about 6 MiB, the server starts to transmit

packets with offset numbers between 3 and 4 MiB again. While it looks like a normal

retransmission at first glance, parts of these offset numbers have not been sent before.

Otherwise, they would be marked orange by our analysis. Instead, single packets

seem to be skipped first and sent later. This can be seen in Figure 5.15 which shows

a highly magnified area of the trace. If possible interleaving data packets should be

avoided because otherwise the ACK range will be fragmented, which in return results

Figure 5.13 – Slow but Ordered Progress in SATLOSS
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Figure 5.14 – Out-of-Order Transmission in SAT

Figure 5.15 – A Detail of Figure 5.14 Highly Magnified.
Note: The markers in the second vertical trace are not retransmissions.
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in fragmented buffers and larger ACK packets. Hereafter many retransmissions occur

with a delay of slightly more than 1 ·RTT. Since no artificial losses are introduced in

SAT and since no retransmissions occur when other implementation are used, non-

artificial, system-related losses seem to be unlikely. Instead, inappropriate timeouts

chosen by the lsquic server whose traces show patterns like this often may cause this

behavior which increases the time to completion dramatically.

The test case GOODPUT, which is not related to SATCOM, but still interesting,

is also a no loss scenario. The trace of msquic with xquic in Figure 5.16 shows an

interesting behavior, though: The transmissions of all iterations passes off quite fine

with a constant goodput of 9.5 Mbit/s, but the last packets are always retransmitted

multiple times. This indicates a bug in handling the end of transmissions. Waiting for

the tail is very problematic because packet losses are only recognized after the loss

timeout has passed since they can not be detected with the help of DupACKs or SACK

packets for subsequent packets. To circumvent this issue, TLP was proposed (see

Section 2.3.2.5). In this case, the problems at the end double the time to completion.

5.6.7 Early Retransmissions

A special pattern can be observed with picoquic as server in some ASTRA and EUTELSAT

measurements. Figure 5.17 shows picoquic with ngtcp2 in the ASTRA scenario. It

Figure 5.16 – Multiple Retransmission at End in GOODPUT
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Figure 5.17 – Trace of Picoquic and Ngtcp2 in ASTRA Scenario with a Conspic-
uous Number of Retransmissions

seems that the server retransmits each and every packet right after transmitting it the

first time—less than one RTT later. Thus, the server cannot know whether the packet

was lost or not. For the entire file of 10 MiB, about 80 MiB were transmitted in total,

which equals a data rate of 16 Mbit/s while the goodput is only 2 Mbit/s. This very

much fills the channel with a capacity of 20 Mbit/s. As picoquic is usually quite good

at estimating the bottleneck bandwidth, this behavior might be intentional. When it

realizes that the client does not allow filling the channel with data by setting the

Receive Window (rcwin) to a too small value, it might send each packet repeatedly in

hope that at least one of them arrives at the client undamaged. Thus, retransmissions

requested by the client, which would result in a major delay, are avoided. Of course,

we can only guess whether this is actually the case.

5.6.8 Long Tail Latency

Furthermore, some traces show a sudden drop of the data rate at a certain point in

time. The transmission proceeds quite well until then and for smaller files everything

would be fine. In Figure 5.18, during the highlighted iteration the server retransmits

packets after 7 s, then after 10 s it even stops and waits for some time until it resumes

sending at the same data rate as before. In some other iterations of the measurement,
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(a) Offset Plot (b) Data Rate

Figure 5.18 – Trace of Neqo and Aioquic in SAT Scenario with a High Drop of
Data Rate

the rate drops to a very low value followed by a very slow exponential growth. This

growth is similar to the startup phase, with the difference that it doesn’t reach a

steady state shortly after. The plot on the right side visualizes the data rate, i.e., the

derivation of the offset plot as explained before. Both exponential increases can be

seen very clearly on the gray traces, but the second exponential phase has a much

smaller gradient. While both implementations sometimes perform well together, the

occasional drops lead to a high tail latency.

Figure 5.19 – Quic-go and Msquic with High Tail Latency
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Figure 5.20 – Quiche and Lsquic with High Tail Latency

Figures 5.19 and 5.20 present two other examples for combinations with high tail

latency that share a common pattern. On average the channel capacity is estimated

more or less correctly, but sometimes the transmission remains at a lower data rate.

Both outlier curves bend slightly to the left after some more seconds. At least in the

case of quiche with lsquic in SATLOSS shown in Figure 5.20, it reaches the same data

rate as in the other iterations at the end. However, the time to completion is about

25 % higher than on average in this measurement and even about 7 times higher in

the measurement of quic-go with msquic via EUTELSAT.

5.6.9 Other Plots and Evaluations

The tools presented in Section 4.2.4 are capable of generating other traces besides

offset plots. In this section, we briefly summarize the findings we gained from them.

5.6.9.1 Data Rate on Return Link

We analyzed the data rate on the return link, i.e., the link from client to server by

creating plots similar to Figure 5.7b in order to check whether the return link might

limit the transmission on the forward link. While data traffic travels from server to the

client, the client has to answer with ACK packets in the reverse direction. When high

load on the reverse paths slows down the flow of ACKs, the server can not transmit



5.6 Analysis of Traces 77

data fast. This issue was analyzed by Ana Custura et al. [63] / Section 3.2.12. The

range of data rates we observed on the return link is quite wide, between a few

dozen of kbit/s and a maximum of 600 kbit/s. This is much less than the available

path bottleneck, which is at least 2 Mbit/s (in SAT, SATLOSS and ASTRA). So the ACK

rate should not influence the overall performance in our case. It is interesting that

there does not seem to be a uniform pattern. Some transmissions generate high

return link utilization at the beginning of the transmission, for some it scales with

the utilization of the forward link, and sometimes there are even significant peeks

right in the middle of the transmission.

5.6.9.2 Packet Number Plots

While TCP packets contain only a sequence number, QUIC packets carry a packet

number and STREAM frames an offset number. We used the latter one to generate

the offset plots as shown before. When the packet number is plotted over time, the

resulting graphs usually look quite similar, when the implementation use consecutive

numbers. One difference is that the offset number is limited to the file size while

packet numbers can become arbitrary large, when there are retransmissions. We

found one implementation handling packet numbers differently than the others:

Mvfst uses a random but constant packet number for the entire transmission. This

contradicts the specification: “Packet numbers [. . .] start at packet number 0. Subse-

quent packets [. . .] MUST increase the packet number by at least one. [. . .] A QUIC

endpoint MUST NOT reuse a packet number [. . .] in one connection. ” [36]

5.6.9.3 Packet Sizes

We also plotted the QUIC packet size over time and identified some implementa-

tions, like aioquic that use values of slightly more than 1200 B, which would be the

minimum value as specified in RFC 9000 [36]. Some implementations, like lsquic,

msquic, neqo, ngtcp2, picoquic increase the packet size during transmission usually

to a value around 1400 B which indicates the usage of PMTUD or DPLPMTUD as

described in Section 2.3.2.3. There are also some implementations, especially nginx

and xquic, which drop either regularly or only for individual packets to a packet size

that is only fractions of the MTU. This can have numerous reasons, which were not

analyzed in more detail. Generally it is advised to use large packets on high BDP

paths in order to fill it more easily—at least in low loss scenarios.
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5.7 Verification of Test Results

In the last section, we want to evaluate the validity of the measurement results.

5.7.1 Comparison with Results of Official QIR

After porting the QIR setup to own machines and after modifying the source code

of the runner it is crucial to verify that the test and measurement results are still

identical to the results before.

5.7.1.1 The LONGRTT Test Case

The symmetric channel and the chosen parameters of the LONGRTT test case are

not typical for a SATCOM access using geostationary satellites, as explained in

Section 4.2.1. However, as it is already part of the official QIR, we use it anyway, to

verify that our modified setup still produces the same results. In our setup as well as

in that by Marten Seemann, apart from the currently unsupported implementations

that are mentioned in Section 5.2.1, all implementations manage to complete the

handshake in such challenging scenarios.

Long Term Evaluation of Test Case LONGRTT

To monitor the activity of the developers of QUIC implementations and to assess

the reliability of the measurement values, we have been downloading and storing

the test results of the official runner since 2021-05-03 because the results will be

deleted after a few days on the website. Analyzing the data set for the LONGRTT

test case gives following insights:

• 65 % of the combinations always or almost always succeed
• 23 % always failed. Among them are combinations with chrome (see Sec-

tion 5.2.1.1) or quicly (see Section 5.2.1.2), but also the same single combina-

tions of implementations that fail in our setup50.
• Most of the other 12 % are combinations with mvfst where most of them got

fixed either on 2021-08-29 or 2021-08-26 and are succeeding since then.

On 2021-10-29 experiments using ngtcp2 as server broke for three repetitions,

but after that it succeeded again. The combination kwik-mvfst broke in the mid of

October 2021. It is hard to say whether these changes are caused by changes in

the code base of the implementations or by changes in QIR. However, it can be

said that the results produced by QIR are trustworthy and not heavily influenced by

coincidence.

50aioquic-msquic, lsquic-picoquic, mvfst-msquic, mvfst-xquic, xquic-msquic
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5.7.2 The GOODPUT Measurement Test Case

In Figure 5.21, the distribution of average measurement results of the GOODPUT

measurement test case are visualized using boxplots. On the left side, the latest

values that are available on the official QIR website at time of writing (2022-01-07),

are used. On the right side our values are shown. For this plot, we only considered

values of experiments that succeeded both locally and on the official interoperability

server.

The mean of the results on the left side is about 9.1 Mbit/s, while the mean

goodput value of our measurements, is at about 9.0 Mbit/s. With less than 1 %

deviation this is quite close. The median and maximum values are equal, and also

the variance of the measurement results is in the same order of magnitude.

We can hence conclude that the results of our setup for the GOODPUT measure-

ment are comparable to the results of the official QIR setup.

Marten Seemann
µ= 9.1 Mbit/s

Md= 9.3Mbit/s
σ = 755.8 kbit/s
min= 3.1 Mbit/s
max= 9.6 Mbit/s

Local
µ= 9.0 Mbit/s

Md= 9.3Mbit/s
σ = 837.1kbit/s
min= 4.0 Mbit/s
max= 9.6 Mbit/s

Source

0 bit/s

2.0 Mbit/s

4.0 Mbit/s

6.0 Mbit/s

8.0 Mbit/s

10.0 Mbit/s
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G
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Comparison of Results of Measurement Goodput
(124 Combinations)

Figure 5.21 – Measurement Results of the GOODPUT Measurement When
Executed on Own Setup Compared to the Latest Results Available Online
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5.7.2.1 Long Term Evaluation of Measurement Test Case GOODPUT

To assess the significance of the measurement values in Figure 5.21 we inspected the

GOODPUT results of the official QIR over several months, like before. In Figure 5.22,

the average measurement values of each implementation combination are aggregated

by their server and plotted over the time. For visual reasons, all values are also

aggregated by each day, which slightly reduces the variance of each series.

Figure 5.22 – Values of Measurement GOODPUT of the Official QIR Over Several
Months

Over the last months the order of magnitude of the performance of most imple-

mentations remains stable.51 During the inspected time range only nginx and kwik

made a leap of about +0.75 Mbit/s at the beginning of August. Around the begin-

ning of October the performance of multiple implementations drifted downwards

though. It may be doubted that this was caused by changes in the code base of the

implementations. Higher utilization of the GitHub Actions servers seems more likely,

as explained in Section 4.1.6.2. However, we can ascertain that the measurement

results are usable for qualitative performance determination.

51Early research results as presented by Tom Jones at 2nd QUIC and Satellite Open Stakeholder
Meeting on 2021-12-02 show that at least quicly improved over the past 3 years with only a little
enhancement during the last year. This evaluation covers only the last 3 month and only the
performance in the environment of the interoperability runner which might differ from the actual
performance because of different configuration of the implementations for the test scenarios. https:
//erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%
20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf slide
13 (visited on 2022-01-03)

https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf
https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf
https://erg.abdn.ac.uk/video/2nd%20ESA%20MTAILS%20Satellite%20Stakeholder%20Meeting/1.1%20Evolution%20of%20QUIC%20and%20Satellite%20over%20the%20Last%203%20Years.pdf
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5.7.3 Comparison with Results of Other Research

In this section, we try to verify if our results are in line to the results of previous

research activities. Suitable values from [3] and from the papers presented in

Section 3.2 with link parameters similar to our scenarios are presented in Table 5.2.

The payload size is annotated with >, when websites have been used as payload. In

the last column, the corresponding goodput values are calculated, to make it easier

to compare it with our results.

Jones et al. present some empirical performance values of QUIC in the appendix

of [3]. The larger link with 50 Mbit/s in the forward direction is comparable to

the link that we have used in EUTELSAT. As TTLB, 5 s are specified, which equals

a goodput of 16.78 Mbit/s. On the one hand, this is more than twice as high

as the average goodput which we have observed (see Table 5.1). On the other

hand, picoquic, according to our results one of the best performing implementations,

achieved on average roughly 15.5 Mbit/s, when used as client and as server. This is in

the same order of magnitude. Our results of picoquic for ASTRA are with 10.1 Mbit/s
only slightly better than the results in mentioned in the draft for a 10/2 Mbit/s
connection (second row of the table). However, the data rate of the forward link is

in our case with 20 Mbit/s twice as high as in the draft. It has to be noted that the

reliability of the values in the draft is questionable, as no further statements about

the measurement setup are provided.

In F©, Deutschmann et al. used three different satellite operators [5]. While

quite similar results are achieved for the first and the second one, the third one,

which provides the lowest data rate, performs best. The paper concludes that

the performance depends not only on the transport protocol, but also highly on

the satellite access. We could not use chrome, as explained in Section 5.2.1.1,

Table 5.2 – Selected Measurement Results from Literature

Source
Imple-
men-
tation

Link
Rate

RTT PLR Size
PLT /
TTLB

Good-
put

[Mbit/s] [ms] [MiB] [s] [Mbit/s]

Jones
2021 [3]

?© 50/10 650 — 10 5.0 16.78
?© 10/2 650 — 10 10.0 8.39

F©
Deutschmann

2019 [5]

chrome 20/2 real Link 10 > 75.0 1.12
chrome 30/2 real Link 10 > 73.0 1.15
chrome 15/3 real Link 10 > 15.0 5.59

I© Mogildea
2019 [61]

ngtcp2 20/2 real Link 1 8.5 0.99
ngtcp2 20/2 600 0 % 1 8.0 1.05
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but the average results for SAT (4.88 Mbit/s), SATLOSS (2.86 Mbit/s) and ASTRA

(3.98 Mbit/s), as they are listed in Table 5.1, are between the results of the three

operators. For all these measurements, the data rate is 20/2 Mbit/s, which is more

or less in the same order, at least taken into account that data rate does not matter

that much compared to RTT, as explained in Section 4.2.3. In contrast to the paper,

we use IETF QUIC instead of gQUIC and use bulk transfer instead of transferring

websites, which might cause differences.

Mogildea et al. compared chrome, quicly and ngtcp2 with different satellite

accesses and with a simulated link in I© [61]. We could unfortunately not get any

results for chrome and quicly, as explained in Section 5.2. However, as the same

access was used, like we did in ASTRA, we can compare the difference of ngtcp2

in this and the emulated scenario. The payload size in the paper is 1 MiB unlike

our measurements which use 10 MiB. Because of the typical exponential start-up

phase and the long time required for the handshake, like it can be seen in the traces

shown in Section 5.6, the results can not be compared using absolute values. In

our measurements, ngtcp2 when used as server and as client achieved an average

goodput of 1.554 Mbit/s in ASTRA and 1.572 Mbit/s in SAT, which is a deviation of

less than 2 %. In the paper, the difference is roughly 5 %, which is comparable. The

absolute goodput values are, as expected, lower than ours because for larger files

the slow start phase weighs less.

5.7.4 Evaluation of Satellite Links

When running measurements with real links instead of simulated networks, it is

important to ensure that the link quality is stable. In literature, the RTT is often mon-

itored during measurements to proof that it is more or less constant. Unfortunately,

no such data is available for our measurements. However, previous measurements

on our satellite accesses show that the RTT is usually between 600 and 1000 ms for

the accesses we use and PLRs are quite constant, as explained in Section 4.2.2.

To limit the influence of the utilization, measurements have been automatically

paused during prime time, i.e., between 6 p.m. and 11 p.m. (see Section 2.1.3.3).

Weather was monitored for the region of the user terminal. It was mostly constant

cloudy with no major precipitation and a fairly constant temperature around 6 °C as

shown in Figure 5.23.

Figure 5.24 visualizes all goodputs values over time which have been measured

via both satellite Internet accesses, Eutelsat Konnect and Novostream Astra Connect.

Each combination of client and server was scheduled 5 times and each scheduled

execution was randomly shuffled with the execution of other combinations. Assuming

that the values of goodput only depend on the performance of the implementations

and not on the link quality, this would result in a stochastically stationary random
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Figure 5.23 – Weather in Nuremberg At the Time of Mesurement
The data for the station №3668 of the Deutscher Wetterdienst was fetched
from https://opendata.dwd.de/ on 2021-11-22. Measurements were taken
between 2021-11-15 and 2021-11-22.

process. The regression lines, added to the plots, show no significant trend. Especially

in the plot on the right side there seems to be no timely variations over the day.

Instead, the results indeed seem to be independent of the time they were recorded.

Thus, it is safe to assume that the utilization of the satellite was quite constant during

time of measuring.

We can also confirm that we didn’t exceed the traffic limit of 60 GiB/month for

the Eutelsat Konnect Zen access. According to vnstat, about 10 GiB were received

and about 2.3 GiB were transmitted on the sole client computer connected to the

Eutelsat modem during the month in which the experiments were performed.

In both plots, there is a gap between 6 p.m. and 11 p.m. as mentioned before.

The additional gap between 6 a.m. and 8 a.m. is a coincidence, caused by the fact

that the measurements completed at about 6 a.m. and new measurements have been

scheduled at about 8 a.m. Most EUTELSAT measurements have been postponed after

ASTRA measurements because of a technical defect. It is unclear whether there was

some outage at Eutelsat or simply a technical defect in the test setup. The single

data points on November 16th and 17th were caused by the fact, that, after running

some experiments, we detected a bug in the setup which resulted in broken Pcap

traces, as described in Section 4.1.4. It was fixed before running the majority of

the measurements. This bug had no effect on the measurement results, but some

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/10_minutes/
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Figure 5.24 – All Measurement Values of Using Real Satellite Links Over Time.
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experiments had to be repeated later, which can be seen on the right side of the left

plot.



Chapter 6

Conclusion

In this thesis, we have analyzed the challenges for transport protocols on Internet

links via geostationary satellites and presented countermeasures already taken to

accelerate TCP. Especially PEPs are used, which break the end-to-end semantic

of TCP connections. We have also summarized the most relevant features in the

context of SATCOM of the new transport protocol QUIC, which is built to replace the

ossified TCP in the HTTP stack. The reduced handshake, the elimination of HoLB

and the extensibility are interesting for SATCOM. While the built-in encryption of

the headers enhances privacy, it also prevents satellite operators from using PEPs.

The analysis of current research on QUIC and SATCOM shows that QUIC exhibits

lower performance than TCP in combination with PEPs. The main reason is the high

delay on satellite links, which most non-specialized CCAs cannot handle. However,

previous research neglects the influence on the performance of the implementation

chosen to run the measurements. Additionally, many research papers use chrome

with gQUIC, but only few use IETF QUIC.

Therefore, we have presented a test bed that allows running measurements with

numerous implementations of QUIC. It is a modified version of the QUIC-Interop-

Runner used by the IETF to perform interoperability tests of available implementa-

tions to check if developers are able to understand and implement the specification

correctly. We have extended the runner with measurement scenarios that emulate

different satellite links. Additionally, it is now possible to use real satellite Internet

accesses for measurements.

Finally, we have presented measurement results of many popular implementations

of IETF QUIC. While some implementations supported by the official runner failed

to run on our setup for technical reasons, we still could use most of them. Many

QUIC servers and clients fail to download a medium-sized file over satellite links

because they either do not manage to transfer it in a very generous time interval, or

they end up in a faulty state. While the successful implementations achieve similarly
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good results in scenarios with low RTTs, almost all reach a rather low link utilization

in satellite scenarios, while the differences between implementations is very high.

Increasing the net data rate does not automatically increase the goodput in the same

ratio. We tried to determine if the client or the server has a larger impact on the

overall performance, but we have to conclude that both contribute to it. There are

also some implementations that perform well as client, but the corresponding server

implementation performs poorly or vice versa. Additionally, some are achieving

slightly better results on satellite links without loss but only very poor results at a PLR

of 1 %. A detailed analysis of the reasons for this was out of scope of this work, but

the Congestion Control Algorithm seems to be a good starting point. By analyzing

individual traces of transmissions, we found flaws that have to be addressed by the

developers.

We were able to show that IETF QUIC can be used in GEO networks, but the

performance is on average very poor. However, downgrading to TCP, like some

operators do it right now by blocking QUIC traffic, is not a long-term solution.

Instead, other solutions have to be found, and the endpoints have to take such

challenging scenarios into account.

6.1 Future Work

QUIC parameters and current implementations should be optimized for paths with

high latency. This could involve extensions such as 0-RTT-BDP [45].
Otherwise, a possible solution might also be to introduce proxies similar to

PEPs for QUIC to enhance the performance of end-to-end connections. Currently,

an IETF working group is designing explicit proxies for QUIC, called Multiplexed

Application Substrate over QUIC Encryption (MASQUE)52. Apple already deployed

similar techniques at large scale to build iCloud private relays53. They might be

used to achieve path-wise congestion control for sub-paths with different properties.

As mobile operators also experience related issues in cellular networks, research is

already underway to deploy such proxies in 5G networks [70]. They call it multi-

domain congestion control, but only little information is available yet. E.g., it is not

clear how the problem of having a CCA inside a congestion-controlled connection is

solved. However, newly introduced middleboxes should be specified very precisely

to avoid a renewed ossification of the Internet. Mechanisms in endpoints that make

it possible to achieve high performance while preserving the end-to-end principle of

the transport protocol would be more desirable.

52MASQUE working group: https://datatracker.ietf.org/wg/masque/ (visited on 2022-01-06)
53Documentation about iCloud Private Relay for Network Operators: https://

developer.apple.com/support/prepare-your-network-for-icloud-private-relay (visited on
2021-12-21)

https://datatracker.ietf.org/wg/masque/
https://developer.apple.com/support/prepare-your-network-for-icloud-private-relay
https://developer.apple.com/support/prepare-your-network-for-icloud-private-relay


Appendix A

Screenshot of Result Website of QIR

The measurement results, files, and plots are available online. The data is presented

on an interactive website, which is available on: https://interop.sedrubal.de/

(visited on 2021-12-23)

Figure A.1 is a partial screenshot of the website.

Figure A.1 – Partial Screenshot of Result Website of QIR Showing the Mea-
surement Results
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Appendix B

Distribution of Measurement Results

by Implementation

In this section, the estimated distribution of measurement results by implementation

for the scenarios GOODPUT, ASTRA and EUTELSAT are attached (Figures B.1 to B.3).

The plots for SAT and SATLOSS are embedded above (see Figures 5.4a and 5.4b).
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Appendix C

Evolution of Congestion Control Algo-

rithms
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Figure C.1 – Evolutionary Graph of Variants of TCP Congestion Control. Taken
from [71]. Since this graph is created in 2010, BBR is missing. It belongs to
the group of delay based algorithms.
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Appendix D

Related Research

A web version of the table on the next pages is available online:

https://github.com/sedrubal/QUIC_HIGH_BDP/blob/

76ab9cc036a0a039e5a550a02263aad198428c06/research_overview.md

(visited on 2021-12-23)
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Measurements of QUIC implementations via Satellite Link

Author Title Date Type of Research Research Focus QUIC Ver. QUIC Client
QUIC
Server

QUIC
Settings

HTTP in
QUIC

Type of
Benchmark

Type of
Evaluation

Link
Type Link Parameters

Comparison with
non-QUIC
protocols TCP Settings Remarks

John Rula et
al.

Mile High WiFi: A
First Look At In-
Flight Internet
Connectivity

04/2018 Paper

Targeting poor
In-Flight
Communications
performance

unspecified unspecified unspecified unspecified unspecified

Websites
(1; 2; 5; 10
obj. a 100;
200; 500;
1000 KB)

PLT emul.

RTT 761; 380.5 ms
rate (sym.) 1.89 3.78
Mbps
PLR 6; 3 %

no PEP
TCP
???
HTTP/1.1 and 2

unspecified

QUIC
measurements
are quire
rudimentary
but trends are
visible.

Siyu Yang et
al.

Performance
Analysis of QUIC
Protocol in
Integrated Satellites
and Terrestrial
Networks

06/2018 Paper

Performance of
QUIC in space-
terrestrial
integrated netw.

gQUIC
Q035

Google
Chrome

quic-go unspecified
Website
(400 KB)

CDF of PLT emul.

RTT <20; 40; 300;
500 ms
rate (sym.) 10 Mbps
PLR 0; 1; 10; >12; 1.6;
3 %

no PEP
TCP
TLS?
HTTP/2

“Cubic Reno”,
w/o & with
ECN (“TCP”,
“TCP+”)

Quite a messy
paper

Han Zhang et
al.

How Quick Is QUIC
in Satellite
Networks

06/2018 Paper

First
Measurements
of QUIC Perf. via
Sat Link

gQUIC
Q039

Google
Chromium

Google
QUIC test
server (was
part of
proto-quic)

CUBIC,
0RTT, MUX

Websites
(344 KB;
784 KB; 2.3
MB)

PLT emul.

RTT 200; 400; 600
ms
rate (sym.) 256
kbps; 512 kbps; 1
Mbps
BER 10^-7; 10^-6;
10^-5

no PEP
TCP
TLS 1.2
HTTP/1.1 & 2

MTU=1500 B
IW=10
default

Wang Yue et
al.

Performance
Evaluation of QUIC
with BBR in Satellite
Internet

12/2018 Paper

Performance of
QUIC with BBR
as cc algorithm
in GEO netw.

gQUIC
Q039

Google
Chromium

Google
QUIC test
server

BBR

Websites
(344 KB;
784 KB, 2.3
MB)

goodput
(di�. PLRs
& over
time)

emul.

RTT 200..600 (or
1000?) ms;
rate (sym.) 1M; 10M
PLR 10^-5..2*10^-1

TCP setup is
described, but no
measurements
using TCP are
provided

Ludovic
Thomas et al.

Google QUIC
performance over a
public SATCOM
access

02/2019 Paper
Measurements
over real sat link
compared to 4G

gQUIC
Q039

Google
Chrome 67

Google
Server (404
page &
some
image)

BBR, 0RTT,
IW=32

HTTP/2

File (5.3
MB);
Website (11
KB)

elapsed
time (box
plot);
time-
sequence

real
RTT 750 ms
rate 25/5 Mbps

PEP
TCP
TLS 1.2
HTTP/2
(“ChromeNoQuic”)

TFO

Jörg
Deutschmann
et al.

Satellite Internet
Performance
Measurements

03/2019 Paper, IETF
Measurements
of di�erent HTTP
vers. via sat link

gQUIC
Q043

Google
Chrome 69

Chromium
QUIC; quic-
go

default

File (10
MB);
Websites
(1.4 MB; 10
MB)

PLT (box
plot)

real
RTT 600 - >700 ms
rate 5-15/2-6 Mbps

PEP & OpenVPN
TCP
no TLS & TLS?
HTTP/1.1 & 2
di�. Operators

CUBIC
SACK
W scaling
IW=10
no ECN

Gorry
Fairhurst et
al.

Measuring QUIC
Dynamics over a
High Delay Path

07/2019 IETF

Trigger
discussion about
poor QUIC
performance at
IETF

dra�t-20 quicly v20 quicly v20
Reno,
IW=10,
MSS=1460

Files (100
KB; 1 MB)

elapsed
time;
time-
sequence
plot

real
RTT >550ms
rate 8.5/1.4 Mbps

PEP & OpenVPN
TCP
TLS 1.2 & 1.3
HTTP/?

CUBIC
SACK
W Scaling
IW=20/10
MSS=1460/1358

Konrad
Wolsing et al.

A Performance
Perspective on Web
Optimized Protocol
Stacks:
TCP+TLS+HTTP/2
vs. QUIC

07/2019 Paper

Fair comparisons
of opt. TCP and
QUIC (not only
for SATCOM)

gQUIC
Q043

Google
Chromium
70

Google
QUIC test
server

def.: IW=32,
pacing,
CUBIC; BBR

HTTP/3
real
Websites

FVC, SI,
VC85, PLT
(CDF of
gain
against
TCP)

emul.

For “MSS”: RTT 760
ms
rate (sym.) 1.89
Mbps
PLR 6 %

no PEP
TCP
TLS 1.3
HTTP/2

CUBIC & BBR
IW=10 & 32
pacing on &
o�
tuned bu�ers,
no slow start
a�ter idle

Di�erent
scenarios
have been
evaluated;
“MSS” is the
only relevant
scenario for

1 2

5

5

5

5 3
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Author Title Date Type of Research Research Focus QUIC Ver. QUIC Client
QUIC
Server

QUIC
Settings

HTTP in
QUIC

Type of
Benchmark

Type of
Evaluation

Link
Type Link Parameters

Comparison with
non-QUIC
protocols TCP Settings Remarks

sat com.

Cristian
Mogildea et
al.

QUIC over Satellite:
Introduction and
Performance
Measurements

09/2019 Paper

Summarize
status quo;
measurements
of
implementations

Q046;
dra�t-22;
dra�t-22

Chromium
QUIC;
quicly;
ngtcp2

same as
client

CUBIC;
Reno;
unspecified

File (1 MB)
time-
sequence
plot

real,
emul.

RTT 600 ms; >600
ms
rate 20/2 Mbps;
16-30/2-3 Mbps
PLR 1 %

PEP & no PEP
TCP
TLS ?
HTTP/2

CUBIC
SACK
W scaling
no ECN

John Border
et al.

Evaluating QUIC’s
Performance
Against
Performance
Enhancing Proxy
over Satellite Link

06/2020 Paper, IETF

Compare
performance of
QUIC with older
HTTP versions

gQUIC
Q046

Google
Chrome 77

Google
Drive (no
details)

unspecified HTTP/2 File (1 GB)
goodput
(box
plots)

real,
emul.

RTT ~600 ms
PLR 0 %; 0.1 %; 1 %

PEP
TCP
???
HTTP/1.1 & 2

default

Nicolas Kuhn
et al.

QUIC: Opportunities
and threats in
SATCOM

10/2020 Paper

Highlight
opportunities
and threats of
QUIC in SATCOM

gQUIC ?
Google
Chrome 67

Google
Server (no
details)

unspecified HTTP/2

Websites
(11 KB; 5.3
MB; <2
obj.)

time-
sequence
plot

real unspecified

PEP
TCP
TLS 1.3?
???

default

Also goodput
analysis via
lossy channel
(PLR? 0.01%;
0.05%; 0.1%;
0.5%);
omitted,
because of
lack of details

Ana Custura
et al.

Impact of
Acknowledgements
using IETF QUIC on
Satellite
Performance

10/2020 Paper

Influence of
ACKs on
performance via
asymmetric links

dra�t-27;
dra�t-26

quicly;
Chromium
QUIC cli

same as
client

Reno; BBR HTTP/3
File (100
KB)

elapsed
time (box
plot)

real,
emul.

RTT 600 ms; ~630
ms
rate 8.5/1.5 Mbps;
10/2 Mbps
(nominal) / 8.5/1.5
Mbps (avail.)
PLR 1 %; no artif.
PLR

PEP & no PEP
TCP
TLS 1.2 & 1.3
HTTP/2

Reno
SACK
W scaling

Measurement
data of
PicoQUIC was
also provided
by someone
else and
results have
been
compared
with PicoQUIC

Nicolas Kuhn
et el.

Feedback from
using QUIC’s 0-RTT-
BDP extension over
SATCOM public
access

07/2021 IETF
Evaluate gain of
0-RTT-BDP
extension

unspecified picoquic picoquic

BBR;
0-RTT-BDP
(local &
frame)

yes
File (0.5; 1;
10; 100 MB)

Used
Bandwidth
in %;
elapsed
time
(table)

emul.

RTT 100..500 ms
rate 1/0.1; 10/2;
50/25; 200/100
Mbps

�. Paper: Scientific paper; IETF: Presentation at IETF meeting
�. emul.: Emulated Link; real: real Satellite link
�. SES Astra, Avanti PLC, and Eutelsat Tooway
�. Eutelsat KA-SAT PRO25Go
�. HTTP versions are not specified, but older gQUIC implementations usually use HTTP/2 over gQUIC while more recent gQUIC versions and IETF QUIC implementations usually use HTTP/3. No hints have been found that raw QUIC without HTTP was used.
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Appendix E

List of Acronyms

ACK Acknowledgement

API Application Programming Interface

AQM Active Queue Management

ARQ Automatic Repeat-Request

AVX Advanced Vector Extensions

BBR Bottleneck Bandwidth and Round-trip propagation time

BDP Bandwidth Delay Product

BER Bit Error Ratio

CCA Congestion Control Algorithm

CDF Cumulative Distribution Function

cnes Centre national d’études spatiales

CPU Central Processing Unit

cwin congestion window

DNS Domain Name System

DPLPMTUD Datagram Packetization Layer PMTUD

DupACK Duplicate Acknowledgement

DVB Digital Video Broadcasting

ECN Explicit Congestion Notification

ELK-stack Elasticsearch, Logstash, Kibana

FEC Forward Error Correction

GEO Geostationary Earth Orbit

GLONASS Global Navigation Satellite System

94



E List of Acronyms 95

GPS Global Positioning System

GS Ground Station

GUI Graphical User Interface

HoLB Head-of-Line-blocking

HTS High Throughput Satellite

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

ID Identifier

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

ISL Inter-Satellite Link

ISP Internet Service Provider

ITU-R International Telecommunication Union, Radiocommunication

Sector

iwin initial congestion window

JSON JavaScript Object Notation

KDE kernel density estimation

LAN Local Area Network

LEO Low Earth Orbit

LFN Long Fat Network

MASQUE Multiplexed Application Substrate over QUIC Encryption

MEO Medium Earth Orbit

MSS Mobile Satellite Services

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NAT Network Address Translation

NCC Network Control Center

OpenBACH Open Benchmark Automation tools for Communication and

Hypervision

OpenSAND Open Satellite Network Demonstrator

PC Personal Computer
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PEP Performance Enhancing Proxy

PLR Packet Loss Rate

PLT Page Load Time

PMTUD Path MTU Discovery

PTO Probe Timeout

QEF quasi error-free

QIR QUIC-Interop-Runner

QoE Quality of Experience

QoS Quality of Service

RACK Recent Acknowledgement

RAM Random Access Memory

rcwin Receive Window

RED Random Early Detection

RFC Request for Comments

RTT Round-Trip Time

SACK Selective Acknowledgement

SATCOM satellite communications

SCC Satellite Control Center

SCTP Stream Control Transmission Protocol

SDG Sustainable Development Goal

SGS Source Ground Station

SIMD Single Instruction Multiple Data

SLA Service Level Agreement

SSE Streaming SIMD Extensions

SSH Secure Shell

STK Satellite Tool Kit

SWOT strengths, weaknesses, opportunities, and threads

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TFO TCP Fast Open

TLP Tail Loss Probe

TLS Transport Layer Security
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TT&C Telemetry, Tracking and Control

TTFB Time to first Byte

TTLB Time to last Byte

TTR Time to responseStart

UDP User Datagram Protocol

URL Uniform Resource Locator

VLEO Very Low Earth Orbit

VM Virtual Machine

VPN Virtual Private Network

WebRTC Web Real-Time Communication
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